A Friedman number is an
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
, which
represented in a given
numeral system, is the result of a non-trivial expression using all its own
digits in combination with any of the four basic arithmetic operators (+, −, ×, ÷),
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
s, parentheses,
exponentiation
In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication ...
, and
concatenation
In formal language theory and computer programming, string concatenation is the operation of joining character strings end-to-end. For example, the concatenation of "snow" and "ball" is "snowball". In certain formalizations of concatenati ...
. Here, non-trivial means that at least one operation besides concatenation is used. Leading zeros cannot be used, since that would also result in trivial Friedman numbers, such as 024 = 20 + 4. For example, 347 is a Friedman number in the
decimal numeral system, since 347 = 7
3 + 4. The decimal Friedman numbers are:
:25, 121, 125, 126, 127, 128, 153, 216, 289, 343, 347, 625, 688, 736, 1022, 1024, 1206, 1255, 1260, 1285, 1296, 1395, 1435, 1503, 1530, 1792, 1827, 2048, 2187, 2349, 2500, 2501, 2502, 2503, 2504, 2505, 2506, 2507, 2508, 2509, 2592, 2737, 2916, ... .
Friedman numbers are named afte
Erich Friedman a now-retired mathematics professor at
Stetson University and recreational mathematics enthusiast.
A Friedman prime is a Friedman number that is also
prime. The decimal Friedman primes are:
:127, 347, 2503, 12101, 12107, 12109, 15629, 15641, 15661, 15667, 15679, 16381, 16447, 16759, 16879, 19739, 21943, 27653, 28547, 28559, 29527, 29531, 32771, 32783, 35933, 36457, 39313, 39343, 43691, 45361, 46619, 46633, 46643, 46649, 46663, 46691, 48751, 48757, 49277, 58921, 59051, 59053, 59263, 59273, 64513, 74353, 74897, 78163, 83357, ... .
Results in base 10
The expressions of the first few Friedman numbers are:
A nice Friedman number is a Friedman number where the digits in the expression can be arranged to be in the same order as in the number itself. For example, we can arrange 127 = 2
7 − 1 as 127 = −1 + 2
7. The first nice Friedman numbers are:
:127, 343, 736, 1285, 2187, 2502, 2592, 2737, 3125, 3685, 3864, 3972, 4096, 6455, 11264, 11664, 12850, 13825, 14641, 15552, 15585, 15612, 15613, 15617, 15618, 15621, 15622, 15623, 15624, 15626, 15632, 15633, 15642, 15645, 15655, 15656, 15662, 15667, 15688, 16377, 16384, 16447, 16875, 17536, 18432, 19453, 19683, 19739 .
A nice Friedman prime is a nice Friedman number that's also prime. The first nice Friedman primes are:
:127, 15667, 16447, 19739, 28559, 32771, 39343, 46633, 46663, 117619, 117643, 117763, 125003, 131071, 137791, 147419, 156253, 156257, 156259, 229373, 248839, 262139, 262147, 279967, 294829, 295247, 326617, 466553, 466561, 466567, 585643, 592763, 649529, 728993, 759359, 786433, 937577 .
Michael Brand proved that the density of Friedman numbers among the naturals is 1, which is to say that the probability of a number chosen randomly and uniformly between 1 and ''n'' to be a Friedman number tends to 1 as ''n'' tends to infinity. This result extends to Friedman numbers under any base of representation. He also proved that the same is true also for binary, ternary and quaternary nice Friedman numbers. The case of base-10 nice Friedman numbers is still open.
Vampire numbers are a subset of Friedman numbers where the only operation is a multiplication of two numbers with the same number of digits, for example 1260 = 21 × 60.
Finding 2-digit Friedman numbers
There usually are fewer 2-digit Friedman numbers than 3-digit and more in any given base, but the 2-digit ones are easier to find. If we represent a 2-digit number as ''mb'' + ''n'', where ''b'' is the base and ''m'', ''n'' are integers from 0 to ''b''−1, we need only check each possible combination of ''m'' and ''n'' against the equalities ''mb'' + ''n'' = ''m''
''n'', and ''mb'' + ''n'' = ''n''
''m'' to see which ones are true. We need not concern ourselves with ''m'' + ''n'' or ''m'' × ''n'', since these will always be smaller than ''mb'' + ''n'' when ''n'' < ''b''. The same clearly holds for ''m'' − ''n'' and ''m'' / ''n''.
Other bases
Friedman numbers also exist for bases other than base 10. For example, 11001
2 = 25 is a Friedman number in the
binary numeral system, since 11001 = 101
10.
The first few known Friedman numbers in other small bases are shown below, written in their respective bases. Numbers shown in bold are nice Friedman numbers.
General results
In base
,
:
is a Friedman number (written in base
as 1''mk'' = ''k'' × ''m''1).
In base
,
:
is a Friedman number (written in base
as 100...00200...001 = 100..001
2, with
zeroes between each nonzero number).
In base
,
:
is a Friedman number (written in base
as 2''k'' = ''k''
2). From the observation that all numbers of the form 2''k'' × b
2''n'' can be written as ''k''000...000
2 with ''n'' 0's, we can find sequences of consecutive Friedman numbers which are arbitrarily long. For example, for
, or in
base 10
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of t ...
, 250068 = 500
2 + 68, from which we can easily deduce the range of consecutive Friedman numbers from 250000 to 250099 in
base 10
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of t ...
.
Repdigit Friedman numbers:
* The smallest repdigit in
base 8 that is a Friedman number is 33 = 3
3.
* The smallest repdigit in
base 10
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of t ...
that is thought to be a Friedman number is 99999999 = (9 + 9/9)
9−9/9 − 9/9.
* It has been proven that
repdigits with at least 22 digits are nice Friedman numbers.
There are an infinite number of prime Friedman numbers in all bases, because for base
the numbers
:
in base 2
:
in base 3
:
in base 4
:
in base 5
:
in base 6
for base
the numbers
:
in base 7,
:
in base 8,
:
in base 9,
:
in base 10,
and for base
:
are Friedman numbers for all
. The numbers of this form are an arithmetic sequence
, where
and
are relatively prime regardless of base as
and
are always relatively prime, and therefore, by
Dirichlet's theorem on arithmetic progressions, the sequence contains an infinite number of primes.
Using Roman numerals
In a trivial sense, all
Roman numeral
Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, ea ...
s with more than one symbol are Friedman numbers. The expression is created by simply inserting + signs into the numeral, and occasionally the − sign with slight rearrangement of the order of the symbols.
Some research into Roman numeral Friedman numbers for which the expression uses some of the other operators has been done. The first such nice Roman numeral Friedman number discovered was 8, since VIII = (V - I) × II. Other such nontrivial examples have been found.
The difficulty of finding nontrivial Friedman numbers in Roman numerals increases not with the size of the number (as is the case with
positional notation numbering systems) but with the numbers of symbols it has. For example, it is much tougher to figure out whether 147 (CXLVII) is a Friedman number in Roman numerals than it is to make the same determination for 1001 (MI). With Roman numerals, one can at least derive quite a few Friedman expressions from any new expression one discovers. Since 8 is a nice nontrivial nice Roman numeral Friedman number, it follows that any number ending in VIII is also such a Friedman number.
References
External links
*
*
Other Friedman numbersin
The On-Line Encyclopedia of Integer Sequences
*
*
*
**
{{Classes of natural numbers
Base-dependent integer sequences
Eponymous numbers in mathematics