HOME
*





Signature Matrix
In mathematics, a signature matrix is a diagonal matrix whose diagonal elements are plus or minus 1, that is, any matrix of the form:. :A=\begin \pm 1 & 0 & \cdots & 0 & 0 \\ 0 & \pm 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \pm 1 & 0 \\ 0 & 0 & \cdots & 0 & \pm 1 \end Any such matrix is its own inverse, hence is an involutory matrix. It is consequently a square root of the identity matrix. Note however that not all square roots of the identity are signature matrices. Noting that signature matrices are both symmetric and involutory, they are thus orthogonal. Consequently, any linear transformation corresponding to a signature matrix constitutes an isometry. Geometrically, signature matrices represent a reflection in each of the axes corresponding to the negated rows or columns. Properties If A is a matrix of N*N then: *-N\leq \operatorname(A)\leq N(Due to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Matrix
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is \left begin 3 & 0 \\ 0 & 2 \end\right/math>, while an example of a 3×3 diagonal matrix is \left begin 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end\right/math>. An identity matrix of any size, or any multiple of it (a scalar matrix), is a diagonal matrix. A diagonal matrix is sometimes called a scaling matrix, since matrix multiplication with it results in changing scale (size). Its determinant is the product of its diagonal values. Definition As stated above, a diagonal matrix is a matrix in which all off-diagonal entries are zero. That is, the matrix with ''n'' columns and ''n'' rows is diagonal if \forall i,j \in \, i \ne j \implies d_ = 0. However, the main diagonal entries are unrestricted. The term ''diagonal matrix'' ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Matrix
In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that :\mathbf = \mathbf = \mathbf_n \ where denotes the -by- identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix is uniquely determined by , and is called the (multiplicative) ''inverse'' of , denoted by . Matrix inversion is the process of finding the matrix that satisfies the prior equation for a given invertible matrix . A square matrix that is ''not'' invertible is called singular or degenerate. A square matrix is singular if and only if its determinant is zero. Singular matrices are rare in the sense that if a square matrix's entries are randomly selected from any finite region on the number line or complex plane, the probability that the matrix is singular is 0, that is, it will "almost never" be singular. Non-square matrices (-by- matrices for which ) do not ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Involutory Matrix
In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix A is an involution if and only if A2 = I, where I is the ''n'' × ''n'' identity matrix. Involutory matrices are all square roots of the identity matrix. This is simply a consequence of the fact that any nonsingular matrix multiplied by its inverse is the identity.. Examples The 2 × 2 real matrix \begina & b \\ c & -a \end is involutory provided that a^2 + bc = 1 . The Pauli matrices in M(2, C) are involutory: \begin \sigma_1 = \sigma_x &= \begin 0 & 1 \\ 1 & 0 \end, \\ \sigma_2 = \sigma_y &= \begin 0 & -i \\ i & 0 \end, \\ \sigma_3 = \sigma_z &= \begin 1 & 0 \\ 0 & -1 \end. \end One of the three classes of elementary matrix is involutory, namely the row-interchange elementary matrix. A special case of another class of elementary matrix, that which re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Square Root Of A Matrix
In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix is said to be a square root of if the matrix product is equal to . Some authors use the name ''square root'' or the notation only for the specific case when is positive semidefinite, to denote the unique matrix that is positive semidefinite and such that (for real-valued matrices, where is the transpose of ). Less frequently, the name ''square root'' may be used for any factorization of a positive semidefinite matrix as , as in the Cholesky factorization, even if . This distinct meaning is discussed in '. Examples In general, a matrix can have several square roots. In particular, if A = B^2 then A=(-B)^2 as well. The 2×2 identity matrix \textstyle\begin1 & 0\\ 0 & 1\end has infinitely many square roots. They are given by :\begin \pm 1 & 0\\ 0 & \pm 1\end and \begin a & b\\ c & -a\end where (a, b, c) are any numbers (real or complex) such that a^2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or can be trivially determined by the context. I_1 = \begin 1 \end ,\ I_2 = \begin 1 & 0 \\ 0 & 1 \end ,\ I_3 = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end ,\ \dots ,\ I_n = \begin 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end. The term unit matrix has also been widely used, but the term ''identity matrix'' is now standard. The term ''unit matrix'' is ambiguous, because it is also used for a matrix of ones and for any unit of the ring of all n\times n matrices. In some fields, such as group theory or quantum mechanics, the identity matrix is sometimes denoted by a boldface one, \mathbf, or called "id" (short for identity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if a_ denotes the entry in the ith row and jth column then for all indices i and j. Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Matrix
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q^\mathrm Q = Q Q^\mathrm = I, where is the transpose of and is the identity matrix. This leads to the equivalent characterization: a matrix is orthogonal if its transpose is equal to its inverse: Q^\mathrm=Q^, where is the inverse of . An orthogonal matrix is necessarily invertible (with inverse ), unitary (), where is the Hermitian adjoint (conjugate transpose) of , and therefore normal () over the real numbers. The determinant of any orthogonal matrix is either +1 or −1. As a linear transformation, an orthogonal matrix preserves the inner product of vectors, and therefore acts as an isometry of Euclidean space, such as a rotation, reflection or rotoreflection. In other words, it is a unitary transformation. The set of orthogonal matrices, under multiplication, forms the group , known as the o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' meaning "equal", and μέτρον ''metron'' meaning "measure". Introduction Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry; the isometry that relates them is either a rigid motion (translation or rotation), or a composition of a rigid motion and a reflection. Isometries are often used in constructions where one spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reflection (mathematics)
In mathematics, a reflection (also spelled reflexion) is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis would look like q. Its image by reflection in a horizontal axis would look like b. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state. The term ''reflection'' is sometimes used for a larger class of mappings from a Euclidean space to itself, namely the non-identity isometries that are involutions. Such isometries have a set of fixed points (the "mirror") that is an affine subspace, but is possibly smaller tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Signature
In mathematics, the signature of a metric tensor ''g'' (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix of the metric tensor with respect to a basis. In relativistic physics, the ''v'' represents the time or virtual dimension, and the ''p'' for the space and physical dimension. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis. The signature thus classifies the metric up to a choice of basis. The signature is often denoted by a pair of integers implying ''r''= 0, or as an explicit list of signs of eigenvalues such as or for the signatures and , respectively. The signature is said to be indefinite or mixed if both ''v'' and ''p'' are nonzero, and degenerate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]