HOME

TheInfoList



OR:

In linear algebra, a symmetric matrix is a
square matrix In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Square matrices are often ...
that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if a_ denotes the entry in the ith row and jth column then for all indices i and j. Every square
diagonal matrix In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal ...
is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refers to one which has real-valued entries. Symmetric matrices appear naturally in a variety of applications, and typical numerical linear algebra software makes special accommodations for them.


Example

The following 3 \times 3 matrix is symmetric: A = \begin 1 & 7 & 3 \\ 7 & 4 & 5 \\ 3 & 5 & 1 \end


Properties


Basic properties

* The sum and difference of two symmetric matrices is symmetric. * This is not always true for the product: given symmetric matrices A and B, then AB is symmetric if and only if A and B commute, i.e., if AB=BA. * For any integer n, A^n is symmetric if A is symmetric. * If A^ exists, it is symmetric if and only if A is symmetric. * Rank of a symmetric matrix A is equal to the number of non-zero eigenvalues of A.


Decomposition into symmetric and skew-symmetric

Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let \mbox_n denote the space of n \times n matrices. If \mbox_n denotes the space of n \times n symmetric matrices and \mbox_n the space of n \times n skew-symmetric matrices then \mbox_n = \mbox_n + \mbox_n and \mbox_n \cap \mbox_n = \, i.e. \mbox_n = \mbox_n \oplus \mbox_n , where \oplus denotes the direct sum. Let X \in \mbox_n then X = \frac\left(X + X^\textsf\right) + \frac\left(X - X^\textsf\right). Notice that \frac\left(X + X^\textsf\right) \in \mbox_n and \frac \left(X - X^\textsf\right) \in \mathrm_n. This is true for every
square matrix In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Square matrices are often ...
X with entries from any field whose characteristic is different from 2. A symmetric n \times n matrix is determined by \tfracn(n+1) scalars (the number of entries on or above the main diagonal). Similarly, a skew-symmetric matrix is determined by \tfracn(n-1) scalars (the number of entries above the main diagonal).


Matrix congruent to a symmetric matrix

Any matrix congruent to a symmetric matrix is again symmetric: if X is a symmetric matrix, then so is A X A^ for any matrix A.


Symmetry implies normality

A (real-valued) symmetric matrix is necessarily a normal matrix.


Real symmetric matrices

Denote by \langle \cdot,\cdot \rangle the standard inner product on \mathbb^n. The real n \times n matrix A is symmetric if and only if \langle Ax, y \rangle = \langle x, Ay \rangle \quad \forall x, y \in \mathbb^n. Since this definition is independent of the choice of basis, symmetry is a property that depends only on the
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
A and a choice of inner product. This characterization of symmetry is useful, for example, in differential geometry, for each tangent space to a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
may be endowed with an inner product, giving rise to what is called a
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
. Another area where this formulation is used is in Hilbert spaces. The finite-dimensional spectral theorem says that any symmetric matrix whose entries are real can be diagonalized by an orthogonal matrix. More explicitly: For every real symmetric matrix A there exists a real orthogonal matrix Q such that D = Q^ A Q is a
diagonal matrix In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal ...
. Every real symmetric matrix is thus,
up to Two Mathematical object, mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' wi ...
choice of an orthonormal basis, a diagonal matrix. If A and B are n \times n real symmetric matrices that commute, then they can be simultaneously diagonalized: there exists a basis of \mathbb^n such that every element of the basis is an eigenvector for both A and B. Every real symmetric matrix is Hermitian, and therefore all its eigenvalues are real. (In fact, the eigenvalues are the entries in the diagonal matrix D (above), and therefore D is uniquely determined by A up to the order of its entries.) Essentially, the property of being symmetric for real matrices corresponds to the property of being Hermitian for complex matrices.


Complex symmetric matrices

A complex symmetric matrix can be 'diagonalized' using a unitary matrix: thus if A is a complex symmetric matrix, there is a unitary matrix U such that U A U^ is a real diagonal matrix with non-negative entries. This result is referred to as the Autonne–Takagi factorization. It was originally proved by
Léon Autonne Léon César Autonne (28 July 1859, Odessa – 12 January 1916) was a French engineer and mathematician, specializing in algebraic geometry, differential equations, and linear algebra. Education and career Autonne studied from 1878 to 1880 at l'É ...
(1915) and Teiji Takagi (1925) and rediscovered with different proofs by several other mathematicians. In fact, the matrix B=A^ A is Hermitian and positive semi-definite, so there is a unitary matrix V such that V^ B V is diagonal with non-negative real entries. Thus C=V^ A V is complex symmetric with C^C real. Writing C=X+iY with X and Y real symmetric matrices, C^C=X^2+Y^2+i(XY-YX). Thus XY=YX. Since X and Y commute, there is a real orthogonal matrix W such that both W X W^ and W Y W^ are diagonal. Setting U=W V^ (a unitary matrix), the matrix UAU^ is complex diagonal. Pre-multiplying U by a suitable diagonal unitary matrix (which preserves unitarity of U), the diagonal entries of UAU^ can be made to be real and non-negative as desired. To construct this matrix, we express the diagonal matrix as UAU^\mathrm T = \operatorname(r_1 e^,r_2 e^, \dots, r_n e^). The matrix we seek is simply given by D = \operatorname(e^,e^, \dots, e^). Clearly DUAU^\mathrm TD = \operatorname(r_1, r_2, \dots, r_n) as desired, so we make the modification U' = DU. Since their squares are the eigenvalues of A^ A, they coincide with the singular values of A. (Note, about the eigen-decomposition of a complex symmetric matrix A, the Jordan normal form of A may not be diagonal, therefore A may not be diagonalized by any similarity transformation.)


Decomposition

Using the Jordan normal form, one can prove that every square real matrix can be written as a product of two real symmetric matrices, and every square complex matrix can be written as a product of two complex symmetric matrices. Every real non-singular matrix can be uniquely factored as the product of an orthogonal matrix and a symmetric positive definite matrix, which is called a polar decomposition. Singular matrices can also be factored, but not uniquely. Cholesky decomposition states that every real positive-definite symmetric matrix A is a product of a lower-triangular matrix L and its transpose, A = LL^\textsf. If the matrix is symmetric indefinite, it may be still decomposed as PAP^\textsf = LDL^\textsf where P is a permutation matrix (arising from the need to pivot), L a lower unit triangular matrix, and D is a direct sum of symmetric 1 \times 1 and 2 \times 2 blocks, which is called Bunch–Kaufman decomposition A general (complex) symmetric matrix may be defective and thus not be diagonalizable. If A is diagonalizable it may be decomposed as A = Q \Lambda Q^\textsf where Q is an orthogonal matrix Q Q^\textsf = I, and \Lambda is a diagonal matrix of the eigenvalues of A. In the special case that A is real symmetric, then Q and \Lambda are also real. To see orthogonality, suppose \mathbf x and \mathbf y are eigenvectors corresponding to distinct eigenvalues \lambda_1, \lambda_2. Then \lambda_1 \langle \mathbf x, \mathbf y \rangle = \langle A \mathbf x, \mathbf y \rangle = \langle \mathbf x, A \mathbf y \rangle = \lambda_2 \langle \mathbf x, \mathbf y \rangle. Since \lambda_1 and \lambda_2 are distinct, we have \langle \mathbf x, \mathbf y \rangle = 0.


Hessian

Symmetric n \times n matrices of real functions appear as the Hessians of twice differentiable functions of n real variables (the continuity of the second derivative is not needed, despite common belief to the opposite). Every
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a ...
q on \mathbb^n can be uniquely written in the form q(\mathbf) = \mathbf^\textsf A \mathbf with a symmetric n \times n matrix A. Because of the above spectral theorem, one can then say that every quadratic form, up to the choice of an orthonormal basis of \R^n, "looks like" q\left(x_1, \ldots, x_n\right) = \sum_^n \lambda_i x_i^2 with real numbers \lambda_i. This considerably simplifies the study of quadratic forms, as well as the study of the level sets \left\ which are generalizations of
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
s. This is important partly because the second-order behavior of every smooth multi-variable function is described by the quadratic form belonging to the function's Hessian; this is a consequence of
Taylor's theorem In calculus, Taylor's theorem gives an approximation of a ''k''-times differentiable function around a given point by a polynomial of degree ''k'', called the ''k''th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the t ...
.


Symmetrizable matrix

An n \times n matrix A is said to be symmetrizable if there exists an invertible
diagonal matrix In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal ...
D and symmetric matrix S such that A = DS. The transpose of a symmetrizable matrix is symmetrizable, since A^=(DS)^=SD=D^(DSD) and DSD is symmetric. A matrix A=(a_) is symmetrizable if and only if the following conditions are met: # a_ = 0 implies a_ = 0 for all 1 \le i \le j \le n. # a_ a_ \dots a_ = a_ a_ \dots a_ for any finite sequence \left(i_1, i_2, \dots, i_k\right).


See also

Other types of
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
or pattern in square matrices have special names; see for example: * Skew-symmetric matrix (also called ''antisymmetric'' or ''antimetric'') * Centrosymmetric matrix * Circulant matrix * Covariance matrix * Coxeter matrix *
GCD matrix In mathematics, a greatest common divisor matrix (sometimes abbreviated as GCD matrix) is a matrix. Definition Let S=(x_1, x_2,\ldots, x_n) be a list of positive integers. Then the n\times n matrix (S) having the greatest common divisor \gcd ...
* Hankel matrix * Hilbert matrix * Persymmetric matrix * Sylvester's law of inertia * Toeplitz matrix *
Transpositions matrix Transpositions matrix (Tr matrix) is square n \times n matrix, n=2^, m \in N , which elements are obtained from the elements of given n-dimensional vector X=(x_i)_ as follows: Tr_ = x_, where \oplus denotes operation "bitwise Exclusive or" (XOR). T ...
See also symmetry in mathematics.


Notes


References

*


External links

*
A brief introduction and proof of eigenvalue properties of the real symmetric matrix

How to implement a Symmetric Matrix in C++
{{Authority control Matrices