HOME

TheInfoList



OR:

In mathematics, a signature matrix is a
diagonal matrix In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal ...
whose diagonal elements are plus or minus 1, that is, any matrix of the form:. :A=\begin \pm 1 & 0 & \cdots & 0 & 0 \\ 0 & \pm 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \pm 1 & 0 \\ 0 & 0 & \cdots & 0 & \pm 1 \end Any such matrix is its own
inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence * Additive inverse (negation), the inverse of a number that, when ad ...
, hence is an
involutory matrix In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix A is an involution if and only if A2 = I, where I is the ''n'' × ''n'' identity matrix. Involutory matr ...
. It is consequently a
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
of the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial ...
. Note however that not all square roots of the identity are signature matrices. Noting that signature matrices are both
symmetric Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
and involutory, they are thus
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
. Consequently, any linear transformation corresponding to a signature matrix constitutes an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
. Geometrically, signature matrices represent a reflection in each of the axes corresponding to the negated rows or columns.


Properties

If A is a matrix of N*N then: *-N\leq \operatorname(A)\leq N(Due to the diagonal values being -1 or 1) *The
Determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
of A is either 1 or -1 (Due to it being diagonal)


See also

*
Metric signature In mathematics, the signature of a metric tensor ''g'' (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative a ...


References

Matrices {{Linear-algebra-stub