Inequation
In mathematics, an inequation is a statement that an inequality holds between two values. It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are: * a 1 * x \neq 0 In some cases, the term "inequation" can be considered synonymous to the term "inequality", while in other cases, an inequation is reserved only for statements whose inequality relation is "not equal to" (≠). Chains of inequations A shorthand notation is used for the conjunction of several inequations involving common expressions, by chaining them together. For example, the chain :0 \leq a < b \leq 1 is shorthand for : which also implies that and . In rare cases, chains without such implications about distant terms are used. For example |
|
Equation
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in French an ''équation'' is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation. ''Solving'' an equation containing variables consists of determining which values of the variables make the equality true. The variables for which the equation has to be solved are also called unknowns, and the values of the unknowns that satisfy the equality are called solutions of the equation. There are two kinds of equations: identities and conditional equations. An identity is true for all values of the variables. A conditional equation is only true for particular values of the variables. An equation is written as two expressions, connected ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Algebra
Elementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables (quantities without fixed values). This use of variables entails use of algebraic notation and an understanding of the general rules of the operations introduced in arithmetic. Unlike abstract algebra, elementary algebra is not concerned with algebraic structures outside the realm of real and complex numbers. It is typically taught to secondary school students and builds on their understanding of arithmetic. The use of variables to denote quantities allows general relationships between quantities to be formally and concisely expressed, and thus enables solving a broader scope of problems. Many quantitative relationships in science and mathematics are expressed as algebraic equations. Algebraic notation Algebraic notation describes the rules and conventions for writing mathematical expression ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inequality (mathematics)
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities: * The notation ''a'' ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equivalence is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or not greater than ''b''). * The notation ''a'' ≥ ''b'' or ''a'' ⩾ ''b'' means that ''a'' is greater than or equal to ''b'' (or, equivalently, at least ''b'', or not less than ''b''). The r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equals Sign
The equals sign ( British English, Unicode) or equal sign (American English), also known as the equality sign, is the mathematical symbol , which is used to indicate equality in some well-defined sense. In an equation, it is placed between two expressions that have the same value, or for which one studies the conditions under which they have the same value. In Unicode and ASCII, it has the code point U+003D. It was invented in 1557 by Robert Recorde. History The etymology of the word "equal" is from the Latin word "''æqualis",'' as meaning "uniform", "identical", or "equal", from ''aequus'' ("level", "even", or "just"). The symbol, now universally accepted in mathematics for equality, was first recorded by Welsh mathematician Robert Recorde in '' The Whetstone of Witte'' (1557). The original form of the symbol was much wider than the present form. In his book Recorde explains his design of the "Gemowe lines" (meaning ''twin'' lines, from the Latin '' gemellus'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relational Operator
In computer science, a relational operator is a programming language construct or operator that tests or defines some kind of relation between two entities. These include numerical equality (''e.g.'', ) and inequalities (''e.g.'', ). In programming languages that include a distinct boolean data type in their type system, like Pascal, Ada, or Java, these operators usually evaluate to true or false, depending on if the conditional relationship between the two operands holds or not. In languages such as C, relational operators return the integers 0 or 1, where 0 stands for false and any non-zero value stands for true. An expression created using a relational operator forms what is termed a ''relational expression'' or a ''condition''. Relational operators can be seen as special cases of logical predicates. Equality Usage Equality is used in many programming language constructs and data types. It is used to test if an element already exists in a set, or to access to a va ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Apartness Relation
In constructive mathematics, an apartness relation is a constructive form of inequality, and is often taken to be more basic than equality. It is often written as \# (⧣ in unicode) to distinguish from the negation of equality (the ''denial inequality'') \neq, which is weaker. Description An apartness relation is a symmetric irreflexive binary relation with the additional condition that if two elements are apart, then any other element is apart from at least one of them (this last property is often called ''co-transitivity'' or ''comparison''). That is, a binary relation \# is an apartness relation if it satisfies:. # \neg\;(x \# x) # x \# y \;\to\; y \# x # x \# y \;\to\; (x \# z \;\vee\; y \# z) The complement of an apartness relation is an equivalence relation, as the above three conditions become reflexivity, symmetry, and transitivity. If this equivalence relation is in fact equality, then the apartness relation is called ''tight''. That is, \# is a if it additionally ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constraint Logic Programming
Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is . In this clause, is a constraint; A(X,Y), B(X), and C(Y) are literals as in regular logic programming. This clause states one condition under which the statement A(X,Y) holds: X+Y is greater than zero and both B(X) and C(Y) are true. As in regular logic programming, programs are queried about the provability of a goal, which may contain constraints in addition to literals. A proof for a goal is composed of clauses whose bodies are satisfiable constraints and literals that can in turn be proved using other clauses. Execution is performed by an interpreter, which starts from the goal and recursively scans the clauses trying to prove the goal. Constraints encountered during this scan a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prolog
Prolog is a logic programming language associated with artificial intelligence and computational linguistics. Prolog has its roots in first-order logic, a formal logic, and unlike many other programming languages, Prolog is intended primarily as a declarative programming language: the program logic is expressed in terms of Finitary relation, relations, represented as facts and Rule of inference, rules. A computation is initiated by running a ''query'' over these relations. The language was developed and implemented in Marseille, France, in 1972 by Alain Colmerauer with Philippe Roussel, based on Robert Kowalski's procedural interpretation of Horn clauses at University of Edinburgh. Prolog was one of the first logic programming languages and remains the most popular such language today, with several free and commercial implementations available. The language has been used for automated theorem proving, theorem proving, expert systems, term rewriting, type systems, and automated ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constraint Programming
Constraint programming (CP) is a paradigm for solving combinatorial problems that draws on a wide range of techniques from artificial intelligence, computer science, and operations research. In constraint programming, users declaratively state the Constraint (mathematics), constraints on the feasible solutions for a set of decision variables. Constraints differ from the common Language primitive, primitives of imperative programming languages in that they do not specify a step or sequence of steps to execute, but rather the properties of a solution to be found. In addition to constraints, users also need to specify a method to solve these constraints. This typically draws upon standard methods like chronological backtracking and constraint propagation, but may use customized code like a problem specific branching Heuristic (computer science), heuristic. Constraint programming takes its root from and can be expressed in the form of constraint logic programming, which embeds constra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Programming
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine (linear) function defined on this polyhedron. A linear programming algorithm finds a point in the polytope where this function has the smallest (or largest) value if such a point exists. Linear programs are problems that can be expressed in canonical form as : \begin & \text ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |