Existentially Closed
In model theory, a branch of mathematical logic, the notion of an existentially closed model (or existentially complete model) of a theory generalizes the notions of algebraically closed fields (for the theory of fields), real closed fields (for the theory of ordered fields), existentially closed groups (for the theory of groups), and dense linear orders without endpoints (for the theory of linear orders). Definition A substructure ''M'' of a structure ''N'' is said to be existentially closed in (or existentially complete in) N if for every quantifier-free formula φ(''x''1,…,''x''''n'',''y''1,…,''y''''n'') and all elements ''b''1,…,''b''''n'' of ''M'' such that φ(''x''1,…,''x''''n'',''b''1,…,''b''''n'') is realized in ''N'', then φ(''x''1,…,''x''''n'',''b''1,…,''b''''n'') is also realized in ''M''. In other words: If there is a tuple ''a''1,…,''a''''n'' in ''N'' such that φ(''a''1,…,''a''''n'',''b''1,…,''b''''n'') holds in ''N'', then such a tuple also ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Theory
In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mathematical logic), mathematical structure), and their Structure (mathematical logic), models (those Structure (mathematical logic), structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be definable set, defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Class (set Theory)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid paradoxes, especially Russell's paradox (see '). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems. In Quine's set-theoretical writing, the phrase "ultimate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Equivalence
In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often needs a stronger condition. In this case ''N'' is called an elementary substructure of ''M'' if every first-order ''σ''-formula ''φ''(''a''1, …, ''a''''n'') with parameters ''a''1, …, ''a''''n'' from ''N'' is true in ''N'' if and only if it is true in ''M''. If ''N'' is an elementary substructure of ''M'', then ''M'' is called an elementary extension of ''N''. An embedding ''h'': ''N'' → ''M'' is called an elementary embedding of ''N'' into ''M'' if ''h''(''N'') is an elementary substructure of ''M''. A substructure ''N'' of ''M'' is elementary if and only if it passes the Tarski–Vaught test: every first-order formula ''φ''(''x'', ''b''1, …, ''b''''n'') with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or blackboard bold A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order Type
In mathematics, especially in set theory, two ordered sets and are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element pairs with exactly one in the other set) f\colon X \to Y such that both and its inverse are monotonic (preserving orders of elements). In the special case when is totally ordered, monotonicity of already implies monotonicity of its inverse. One and the same set may be equipped with different orders. Since order-equivalence is an equivalence relation, it partitions the class of all ordered sets into equivalence classes. Notation If a set X has order type denoted \sigma, the order type of the reversed order, the dual of X, is denoted \sigma^. The order type of a well-ordered set is sometimes expressed as . Examples The order type of the integers and rationals is usually denoted \pi and \eta, respectively. The set of integers and the set of even integers have the same order type, becaus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empty Set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called ''non-empty''. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø () in the Danish orthography, Danish and Norwegian orthography, Norwegian a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Countable Set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said to be countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as def ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dense Order
In mathematics, a partial order or total order < on a is said to be dense if, for all and in for which , there is a in such that . That is, for any two elements, one less than the other, there is another element between them. For total orders this can be simplified to "for any two distinct elements, there is another element between them", since all elements of a total order are comparable. Example The s as a linearly ordered set are a densely ordered set in this sense, ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Function
In mathematics, a binary function (also called bivariate function, or function of two variables) is a function that takes two inputs. Precisely stated, a function f is binary if there exists sets X, Y, Z such that :\,f \colon X \times Y \rightarrow Z where X \times Y is the Cartesian product of X and Y. Alternative definitions Set-theoretically, a binary function can be represented as a subset of the Cartesian product X \times Y \times Z, where (x,y,z) belongs to the subset if and only if f(x,y) = z. Conversely, a subset R defines a binary function if and only if for any x \in X and y \in Y, there exists a unique z \in Z such that (x,y,z) belongs to R. f(x,y) is then defined to be this z. Alternatively, a binary function may be interpreted as simply a function from X \times Y to Z. Even when thought of this way, however, one generally writes f(x,y) instead of f((x,y)). (That is, the same pair of parentheses is used to indicate both function application and the formation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Signature (logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (single-sorted) signature can be defined as a 4-tuple \sigma = \left(S_, S_, S_, \operatorname\right), where S_ and S_ are disjoint sets not containing any other basic logical symbols, called respectively * '' function symbols'' (examples: +, \times), * ''s'' or '' predicates'' (examples: \,\leq, \, \in), * '' constant symbols'' (examples: 0, 1), and a function \operatorname : S_ \cup S_ \to \N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called n-ary if its arity is n. Some authors define a nullary (0-ary) function symbol as ''constant symbol'', ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |