HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
partial order In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable ...
or
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
< on a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
X is said to be dense if, for all x and y in X for which x < y, there is a z in X such that x < z < y. That is, for any two elements, one less than the other, there is another element between them. For total orders this can be simplified to "for any two distinct elements, there is another element between them", since all elements of a total order are comparable.


Example

The
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s as a linearly ordered set are a densely ordered set in this sense, as are the algebraic numbers, the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, the dyadic rationals and the
decimal fraction The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of the ...
s. In fact, every Archimedean ordered ring extension of the
integers An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
\mathbb /math> is a densely ordered set. On the other hand, the linear ordering on the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s is not dense.


Uniqueness for total dense orders without endpoints

Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
proved that every two non-empty dense totally ordered
countable set In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
s without lower or upper bounds are order-isomorphic. This makes the theory of dense linear orders without bounds an example of an ω- categorical theory where ω is the smallest
limit ordinal In set theory, a limit ordinal is an ordinal number that is neither zero nor a successor ordinal. Alternatively, an ordinal λ is a limit ordinal if there is an ordinal less than λ, and whenever β is an ordinal less than λ, then there exists a ...
. For example, there exists an order-isomorphism between the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s and other densely ordered countable sets including the dyadic rationals and the algebraic numbers. The proofs of these results use the back-and-forth method. Minkowski's question mark function can be used to determine the order isomorphisms between the quadratic algebraic numbers and the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s, and between the rationals and the dyadic rationals.


Generalizations

Any
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
''R'' is said to be ''dense'' if, for all ''R''-related ''x'' and ''y'', there is a ''z'' such that ''x'' and ''z'' and also ''z'' and ''y'' are ''R''-related. Formally: : \forall x\ \forall y\ xRy\Rightarrow (\exists z\ xRz \land zRy). Alternatively, in terms of composition of ''R'' with itself, the dense condition may be expressed as ''R'' ⊆ (''R'' ; ''R'').
Gunter Schmidt Gunter Schmidt (born 22 November 1938) is a Germans, German sexologist, psychotherapist and social psychologist. He was born in Berlin. Schmidt was the director of the centre for sexual research in the clinic of the University Medical Center Ham ...
(2011) ''Relational Mathematics'', page 212,
Cambridge University Press Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessme ...
Sufficient conditions for a binary relation ''R'' on a set ''X'' to be dense are: * ''R'' is reflexive; * ''R'' is coreflexive; * ''R'' is quasireflexive; * ''R'' is left or right Euclidean; or * ''R'' is symmetric and semi-connex and ''X'' has at least 3 elements. None of them are necessary. For instance, there is a relation R that is not reflexive but dense. A non-empty and dense relation cannot be antitransitive. A strict partial order < is a dense order
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
< is a dense relation. A dense relation that is also transitive is said to be idempotent.


See also

*
Dense set In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the ...
— a subset of a topological space whose closure is the whole space * Dense-in-itself — a subset A of a topological space such that A does not contain an isolated point * Kripke semantics — a dense accessibility relation corresponds to the axiom \Box\Box A \rightarrow \Box A


References


Further reading

* David Harel, Dexter Kozen, Jerzy Tiuryn, ''Dynamic logic'', MIT Press, 2000, , p. 6ff {{Order theory Properties of binary relations Order theory