Equichordal Points
In geometry, an equichordal point is a point defined relative to a convex plane curve such that all chords passing through the point are equal in length. Two common figures with equichordal points are the circle and the limaçon. It is impossible for a curve to have more than one equichordal point. Equichordal curves A curve is called equichordal when it has an equichordal point. Such a curve may be constructed as the pedal curve of a curve of constant width. For instance, the pedal curve of a circle is either another circle (when the center of the circle is the pedal point) or a limaçon; both are equichordal curves. Multiple equichordal points In 1916 Fujiwara proposed the question of whether a curve could have two equichordal points (offering in the same paper a proof that three or more is impossible). Independently, a year later, Blaschke, Rothe and Weitzenböck posed the same question. The problem remained unsolved until it was finally proven impossible in 1996 by Marek Ry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a '' geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Set
In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment (possibly empty). For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval with the property that its epigraph (the set of points on or above the graph of the function) is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chord (geometry)
A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. The infinite line extension of a chord is a secant line, or just ''secant''. More generally, a chord is a line segment joining two points on any curve, for instance, an ellipse. A chord that passes through a circle's center point is the circle's diameter. The word ''chord'' is from the Latin ''chorda'' meaning '' bowstring''. In circles Among properties of chords of a circle are the following: # Chords are equidistant from the center if and only if their lengths are equal. # Equal chords are subtended by equal angles from the center of the circle. # A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. # If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem). In conics The midpoints of a set of parallel chords of a coni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. Usually, the radius is required to be a positive number. A circle with r=0 (a single point) is a degenerate case. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted. Specifically, a circle is a simple closed curve that divides the plane into two regions: an interior and an exterior. In everyday use, the term "circle" may be used interchangeably to refer to either the boundary of the figure, or to the whole figure including its interior; in strict technical usage, the circle is only the boundary and the whole figure is called a '' disc''. A circle may also be defined as a special ki ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limaçon
In geometry, a limaçon or limacon , also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius. It can also be defined as the roulette formed when a circle rolls around a circle with half its radius so that the smaller circle is inside the larger circle. Thus, they belong to the family of curves called centered trochoids; more specifically, they are epitrochoids. The cardioid is the special case in which the point generating the roulette lies on the rolling circle; the resulting curve has a cusp. Depending on the position of the point generating the curve, it may have inner and outer loops (giving the family its name), it may be heart-shaped, or it may be oval. A limaçon is a bicircular rational plane algebraic curve of degree 4. History The earliest formal research on limaçons is generally attributed to Étienne Pascal, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pedal Curve
A pedal (from the Latin '' pes'' ''pedis'', "foot") is a lever designed to be operated by foot and may refer to: Computers and other equipment * Footmouse, a foot-operated computer mouse * In medical transcription, a pedal is used to control playback of voice dictations Geometry * Pedal curve, a curve derived by construction from a given curve * Pedal triangle, a triangle obtained by projecting a point onto the sides of a triangle Music Albums * ''Pedals'' (Rival Schools album) * ''Pedals'' (Speak album) Other music * Bass drum pedal, a pedal used to play a bass drum while leaving the drummer's hands free to play other drums with drum sticks, hands, etc. * Effects pedal, a pedal used commonly for electric guitars * Pedal keyboard, a musical keyboard operated by the player's feet * Pedal harp, a modern orchestral harp with pedals used to change the tuning of its strings * Pedal point, a type of nonchord tone, usually in the bass * Pedal tone, a fundamental tone played ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curve Of Constant Width
In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve. Every body of constant width is a convex set, its boundary crossed at most twice by any line, and if the line crosses perpendicularly it does so at both crossings, separated by the width. By Barbier's theorem, the body's perimeter is exactly times its width, but its area depends on its shape, with the Reuleaux triangle having the smallest possible area for its width and the circle the largest. Every superset of a bod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Monthly
''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. In this the ''American Mathematical Monthly'' fulfills a different role from that of typical mathematical research journals. The ''American Mathematical Monthly'' is the most widely read mathematics journal in the world according to records on JSTOR. Tables of contents with article abstracts from 1997–2010 are availablonline The MAA gives the Lester R. Ford Awards annually to "authors of articles of expository excellence" published in the ''American Mathematical Monthly''. Editors *2022� ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Marek Rychlik , also spelled Merek, a village in Iran
{{disambig ...
Marek is the West Slavic (Czech, Polish and Slovak) masculine equivalent of Marcus, Marc or Mark. The name may refer to: * Marek (given name) * Marek (surname) * Marek, the pseudonym of Bulgarian communist Stanke Dimitrov (1889–1944) * The title character of '' Oberinspektor Marek'', an Austrian television series See also * * Marek's disease * VC Marek Union-Ivkoni, Bulgarian professional men's volleyball team, based in Dupnitsa * Marek i Wacek (meaning Marek and Wacek), a musical duo of Polish pianists Marek Tomaszewski and Wacław "Wacek" Kisielewski * Marrick * Merrick (other) * Mereg Mereg ( fa, مرگ; also known as Mark, Merek, Merk, and Mirg) is a village in Sarkal Rural District, in the Central District of Marivan County, Kurdistan Province, Iran. As of the 2006 census, it had a population of 372, distributed among 80 fa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equichordal Point Problem
In Euclidean plane geometry, the equichordal point problem is the question whether a closed planar convex body can have two equichordal points. The problem was originally posed in 1916 by Fujiwara and in 1917 by Wilhelm Blaschke, Hermann Rothe, and Roland Weitzenböck. W. Blaschke, H. Rothe, and R. Weitzenböck. Aufgabe 552. Arch. Math. Phys., 27:82, 1917 A generalization of this problem statement was answered in the negative in 1997 by Marek R. Rychlik. Problem statement An equichordal curve is a closed planar curve for which a point in the plane exists such that all chords passing through this point are equal in length. Such a point is called an equichordal point. It is easy to construct equichordal curves with a single equichordal point, particularly when the curves are symmetric; the simplest construction is a circle. It has long only been conjectured that no convex equichordal curve with two equichordal points can exist. More generally, it was asked whether there exists a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |