
In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, an equichordal point is a point defined relative to a
convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytop ...
plane curve such that all
chords
Chord may refer to:
* Chord (music), an aggregate of musical pitches sounded simultaneously
** Guitar chord a chord played on a guitar, which has a particular tuning
* Chord (geometry), a line segment joining two points on a curve
* Chord ...
passing through the point are equal in length. Two common figures with equichordal points are the
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
and the
limaçon
In geometry, a limaçon or limacon , also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius. I ...
. It is impossible for a curve to have more than one equichordal point.
Equichordal curves
A curve is called equichordal when it has an equichordal point. Such a curve may be constructed as the
pedal curve
A pedal (from the Latin '' pes'' ''pedis'', "foot") is a lever designed to be operated by foot and may refer to:
Computers and other equipment
* Footmouse, a foot-operated computer mouse
* In medical transcription, a pedal is used to control p ...
of a
curve of constant width
In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width ...
. For instance, the pedal curve of a
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
is either another circle (when the center of the circle is the pedal point) or a
limaçon
In geometry, a limaçon or limacon , also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius. I ...
; both are equichordal curves.
Multiple equichordal points
In 1916 Fujiwara proposed the question of whether a curve could have two equichordal points (offering in the same paper a proof that three or more is impossible). Independently, a year later, Blaschke, Rothe and Weitzenböck posed the same question. The problem remained unsolved until it was finally proven impossible in 1996 by
Marek Rychlik.
[.] Despite its elementary formulation, the
equichordal point problem
In Euclidean plane geometry, the equichordal point problem is the question whether a closed planar convex body can have two equichordal points. The problem was originally posed in 1916 by Fujiwara and in 1917 by Wilhelm Blaschke, Hermann Rothe, an ...
was difficult to solve.
Rychlik's theorem is proved by methods of advanced complex analysis and algebraic geometry and it is 72 pages long.
References
External links
*
{{DEFAULTSORT:Equichordal Point
Curves
Geometry