HOME



picture info

Differentiation Rules
This article is a summary of differentiation rules, that is, rules for computing the derivative of a function (mathematics), function in calculus. Elementary rules of differentiation Unless otherwise stated, all functions are functions of real numbers (\mathbb) that return real values, although, more generally, the formulas below apply wherever they are well defined, including the case of complex numbers (\mathbb). Constant term rule For any value of c, where c \in \mathbb, if f(x) is the constant function given by f(x) = c, then \frac = 0. Proof Let c \in \mathbb and f(x) = c. By the definition of the derivative: \begin f'(x) &= \lim_\frac \\ &= \lim_ \frac \\ &= \lim_ \frac \\ &= \lim_ 0 \\ &= 0. \end This computation shows that the derivative of any constant function is 0. Intuitive (geometric) explanation The derivative of the function at a point is the slope of the line tangent to the curve at the point. The slope of the constant function is 0, because the Tangent, tangen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation. There are multiple different notations for differentiation. '' Leibniz notation'', named after Gottfried Wilhelm Leibniz, is represented as the ratio of two differentials, whereas ''prime notation'' is written by adding a prime mark. Higher order notations represent repeated differentiation, and they are usually denoted in Leib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logarithmic Differentiation
In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function , (\ln f)' = \frac \quad \implies \quad f' = f \cdot (\ln f)'. The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself. This usually occurs in cases where the function of interest is composed of a product of a number of parts, so that a logarithmic transformation will turn it into a sum of separate parts (which is much easier to differentiate). It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base '' e'') to transform products into sums and divisions into subtractions. The principle can be implemented, at least in part, in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Identities
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain domain of discourse. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Formally, an identity is a universally quantified equality. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Tables
Mathematical tables are lists of numbers showing the results of a calculation with varying arguments. Trigonometric tables were used in ancient Greece and India for applications to astronomy and celestial navigation, and continued to be widely used until electronic calculators became cheap and plentiful in the 1970s, in order to simplify and drastically speed up computation. Tables of logarithms and trigonometric functions were common in math and science textbooks, and specialized tables were published for numerous applications. History and use The first tables of trigonometric functions known to be made were by Hipparchus (c.190 – c.120 BCE) and Menelaus (c.70–140 CE), but both have been lost. Along with the surviving table of Ptolemy (c. 90 – c.168 CE), they were all tables of chords and not of half-chords, that is, the sine function. The table produced by the Indian mathematician Āryabhaṭa (476–550 CE) is considered the first sine table ever constructed. � ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Calculus
In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve. The primary objects of study in differential calculus are the derivative of a Function (mathematics), function, related notions such as the Differential of a function, differential, and their applications. The derivative of a function at a chosen input value describes the Rate (mathematics)#Of_change, rate of change of the function near that input value. The process of finding a derivative is called differentiation. Geometrically, the derivative at a point is the slope of the tangent, tangent line to the graph of a function, graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differentiation Rules
This article is a summary of differentiation rules, that is, rules for computing the derivative of a function (mathematics), function in calculus. Elementary rules of differentiation Unless otherwise stated, all functions are functions of real numbers (\mathbb) that return real values, although, more generally, the formulas below apply wherever they are well defined, including the case of complex numbers (\mathbb). Constant term rule For any value of c, where c \in \mathbb, if f(x) is the constant function given by f(x) = c, then \frac = 0. Proof Let c \in \mathbb and f(x) = c. By the definition of the derivative: \begin f'(x) &= \lim_\frac \\ &= \lim_ \frac \\ &= \lim_ \frac \\ &= \lim_ 0 \\ &= 0. \end This computation shows that the derivative of any constant function is 0. Intuitive (geometric) explanation The derivative of the function at a point is the slope of the line tangent to the curve at the point. The slope of the constant function is 0, because the Tangent, tangen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Articles Containing Proofs
Article often refers to: * Article (grammar), a grammatical element used to indicate definiteness or indefiniteness * Article (publishing), a piece of nonfictional prose that is an independent part of a publication Article(s) may also refer to: Government and law * Elements of treaties of the European Union * Articles of association, the regulations governing a company, used in India, the UK and other countries; called articles of incorporation in the US * Articles of clerkship, the contract accepted to become an articled clerk * Articles of Confederation, the predecessor to the current United States Constitution * Article of impeachment, a formal document and charge used for impeachment in the United States * Article of manufacture, in the United States patent law, a category of things that may be patented * Articles of organization, for limited liability organizations, a US equivalent of articles of association Other uses * Article element , in HTML * "Articles", a song ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diophantine Equation
''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name: *Diophantine approximation In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated ... * Diophantine equation * Diophantine quintuple * Diophantine set {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Theorem Of Calculus
The fundamental theorem of calculus is a theorem that links the concept of derivative, differentiating a function (mathematics), function (calculating its slopes, or rate of change at every point on its domain) with the concept of integral, integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be thought of as inverses of each other. The first part of the theorem, the first fundamental theorem of calculus, states that for a continuous function , an antiderivative or indefinite integral can be obtained as the integral of over an interval with a variable upper bound. Conversely, the second part of the theorem, the second fundamental theorem of calculus, states that the integral of a function over a fixed Interval (mathematics), interval is equal to the change of any antiderivative between the ends of the interval. This greatly simplifies the calculation of a definite integral pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leibniz Integral Rule
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form \int_^ f(x,t)\,dt, where -\infty < a(x), b(x) < \infty and the integrands are functions dependent on x, the derivative of this integral is expressible as \begin & \frac \left (\int_^ f(x,t)\,dt \right ) \\ &= f\big(x,b(x)\big)\cdot \frac b(x) - f\big(x,a(x)\big)\cdot \frac a(x) + \int_^\frac f(x,t) \,dt \end where the partial derivative \tfrac indicates that inside the integral, only the variation of f(x, t) with x is considered in taking the derivative. In the special case where the functions a(x) and b(x ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digamma Function
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: :\psi(z) = \frac\ln\Gamma(z) = \frac. It is the first of the polygamma functions. This function is Monotonic function, strictly increasing and Concave function, strictly concave on (0,\infty), and it Asymptotic analysis, asymptotically behaves as :\psi(z) \sim \ln - \frac, for complex numbers with large modulus (, z, \rightarrow\infty) in the Circular sector, sector , \arg z, 0. The digamma function is often denoted as \psi_0(x), \psi^(x) or (the uppercase form of the archaic Greek consonant digamma meaning Gamma, double-gamma). Gamma. Relation to harmonic numbers The gamma function obeys the equation :\Gamma(z+1)=z\Gamma(z). \, Taking the logarithm on both sides and using the functional equation property of the log-gamma function gives: :\log \Gamma(z+1)=\log(z)+\log \Gamma(z), Differentiating both sides with respect to gives: :\psi(z+1)=\psi(z)+\frac Since the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]