In
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
, logarithmic differentiation or differentiation by taking logarithms is a method used to
differentiate functions by employing the
logarithmic derivative
In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function ''f'' is defined by the formula
\frac
where f' is the derivative of ''f''. Intuitively, this is the infinitesimal relative change in ''f ...
of a function ''f'',
:
The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself. This usually occurs in cases where the function of interest is composed of a product of a number of parts, so that a logarithmic transformation will turn it into a sum of separate parts (which is much easier to differentiate). It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the
chain rule
In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x) ...
as well as properties of
logarithms
In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number to the base is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 o ...
(in particular, the
natural logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
, or the logarithm to the base ''
e'') to transform products into sums and divisions into subtractions.
The principle can be implemented, at least in part, in the differentiation of almost all
differentiable function
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
s, providing that these functions are non-zero.
Overview
The method is used because the properties of logarithms provide avenues to quickly simplify complicated functions to be differentiated. These properties can be manipulated after the taking of natural logarithms on both sides and before the preliminary differentiation. The most commonly used logarithm laws are
:
Higher order derivatives
Using
Faà di Bruno's formula
Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after , although he was not the first to state or prove the formula. In 1800, more than 50 years before Faà di Bruno, the French ...
, the n-th order logarithmic derivative is,
:
Using this, the first four derivatives are,
:
:
:
Applications
Products
A
natural logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
is applied to a product of two functions
:
to transform the product into a sum
:
Differentiating by applying the
chain
A chain is a wikt:series#Noun, serial assembly of connected pieces, called links, typically made of metal, with an overall character similar to that of a rope in that it is flexible and curved in compression (physics), compression but line (g ...
and the
sum
Sum most commonly means the total of two or more numbers added together; see addition.
Sum can also refer to:
Mathematics
* Sum (category theory), the generic concept of summation in mathematics
* Sum, the result of summation, the additio ...
rules yields
:
and, after rearranging, yields
:
,
which is the
product rule
In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v + ...
for derivatives.
Quotients
A
natural logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
is applied to a quotient of two functions
:
to transform the division into a subtraction
:
Differentiating by applying the
chain
A chain is a wikt:series#Noun, serial assembly of connected pieces, called links, typically made of metal, with an overall character similar to that of a rope in that it is flexible and curved in compression (physics), compression but line (g ...
and the
sum
Sum most commonly means the total of two or more numbers added together; see addition.
Sum can also refer to:
Mathematics
* Sum (category theory), the generic concept of summation in mathematics
* Sum, the result of summation, the additio ...
rules yields
:
and, after rearranging, yields
:
,
which is the
quotient rule for derivatives.
Functional exponents
For a function of the form
:
the
natural logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
transforms the exponentiation into a product
:
Differentiating by applying the
chain
A chain is a wikt:series#Noun, serial assembly of connected pieces, called links, typically made of metal, with an overall character similar to that of a rope in that it is flexible and curved in compression (physics), compression but line (g ...
and the
product rules yields
:
and, after rearranging, yields
:
The same result can be obtained by rewriting ''f'' in terms of
exp and applying the chain rule.
General case
Using
capital pi notation, let
:
be a finite product of functions with functional exponents.
The application of natural logarithms results in (with
capital sigma notation)
:
and after differentiation,
:
Rearrange to get the derivative of the original function,
:
See also
*
*
*
*
*
*
Notes
{{Calculus topics
Differential calculus
Logarithms