
In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, differential calculus is a subfield of
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being
integral calculus
In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with di ...
—the study of the area beneath a curve.
The primary objects of study in differential calculus are the
derivative of a
function, related notions such as the
differential, and their applications. The derivative of a function at a chosen input value describes the rate of change of the function near that input value. The process of finding a derivative is called differentiation. Geometrically, the derivative at a point is the
slope of the
tangent line to the
graph of the function at that point, provided that the derivative exists and is defined at that point. For a
real-valued function of a single real variable, the derivative of a function at a point generally determines the best
linear approximation to the function at that point.
Differential calculus and integral calculus are connected by the
fundamental theorem of calculus, which states that differentiation is the reverse process to
integration
Integration may refer to:
Biology
* Multisensory integration
* Path integration
* Pre-integration complex, viral genetic material used to insert a viral genome into a host genome
*DNA integration, by means of site-specific recombinase technolo ...
.
Differentiation has applications in nearly all quantitative disciplines. In
physics, the derivative of the
displacement of a moving body with respect to time is the
velocity of the body, and the derivative of the velocity with respect to time is
acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by ...
. The derivative of the
momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
of a body with respect to
time equals the force applied to the body; rearranging this derivative statement leads to the famous equation associated with
Newton's second law of motion
Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:
# A body remains at rest, or in moti ...
. The
reaction rate
The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit ...
of a
chemical reaction is a derivative. In
operations research, derivatives determine the most efficient ways to transport materials and design factories.
Derivatives are frequently used to find the
maxima and minima of a function. Equations involving derivatives are called
differential equations
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
and are fundamental in describing
natural phenomena. Derivatives and their generalizations appear in many fields of mathematics, such as
complex analysis,
functional analysis,
differential geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
,
measure theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many sim ...
, and
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The te ...
.
Derivative

The derivative of
at the point
is the slope of the tangent to
. In order to gain an intuition for this, one must first be familiar with finding the slope of a linear equation, written in the form
. The slope of an equation is its steepness. It can be found by picking any two points and dividing the change in
by the change in
, meaning that
. For, the graph of
has a slope of
, as shown in the diagram below:

:
For brevity,
is often written as
, with
being the Greek letter delta, meaning 'change in'. The slope of a linear equation is constant, meaning that the steepness is the same everywhere. However, many graphs such as
vary in their steepness. This means that you can no longer pick any two arbitrary points and compute the slope. Instead, the slope of the graph can be computed by considering the tangent line—a line that 'just touches' a particular point. The slope of a curve at a particular point is equal to the slope of the tangent to that point. For example,
has a slope of
at
because the slope of the tangent line to that point is equal to
:

The derivative of a
function is then simply the slope of this tangent line. Even though the tangent line only touches a single point at the point of tangency, it can be approximated by a line that goes through two points. This is known as a
secant line. If the two points that the secant line goes through are close together, then the secant line closely resembles the tangent line, and, as a result, its slope is also very similar:

The advantage of using a secant line is that its slope can be calculated directly. Consider the two points on the graph
and
, where
is a small number. As before, the slope of the line passing through these two points can be calculated with the formula
. This gives
:
As
gets closer and closer to
, the slope of the secant line gets closer and closer to the slope of the tangent line. This is formally written as
:
The above expression means 'as
gets closer and closer to 0, the slope of the secant line gets closer and closer to a certain value'. The value that is being approached is the derivative of
; this can be written as
. If
, the derivative can also be written as
, with
representing an infinitesimal change. For example,
represents an infinitesimal change in x. In summary, if
, then the derivative of
is
:
provided such a limit exists. We have thus succeeded in properly defining the derivative of a function, meaning that the 'slope of the tangent line' now has a precise mathematical meaning. Differentiating a function using the above definition is known as differentiation from first principles. Here is a proof, using differentiation from first principles, that the derivative of
is
:
:
As
approaches
,
approaches
. Therefore,
. This proof can be generalised to show that
if
and
are
constants
Constant or The Constant may refer to:
Mathematics
* Constant (mathematics), a non-varying value
* Mathematical constant, a special number that arises naturally in mathematics, such as or
Other concepts
* Control variable or scientific const ...
. This is known as the
power rule. For example,
. However, many other functions cannot be differentiated as easily as
polynomial functions, meaning that sometimes further techniques are needed to find the derivative of a function. These techniques include the
chain rule
In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x) ...
,
product rule, and
quotient rule. Other functions cannot be differentiated at all, giving rise to the concept of
differentiability.
A closely related concept to the derivative of a function is its
differential. When and are real variables, the derivative of at is the slope of the tangent line to the graph of at . Because the source and target of are one-dimensional, the derivative of is a real number. If and are vectors, then the best linear approximation to the graph of depends on how changes in several directions at once. Taking the best linear approximation in a single direction determines a
partial derivative
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Part ...
, which is usually denoted . The linearization of in all directions at once is called the
total derivative.
History of differentiation
The concept of a derivative in the sense of a
tangent line is a very old one, familiar to ancient
Greek mathematicians such as
Euclid (c. 300 BC),
Archimedes (c. 287–212 BC) and
Apollonius of Perga (c. 262–190 BC).
Archimedes also made use of
indivisibles, although these were primarily used to study areas and volumes rather than derivatives and tangents (see ''
The Method of Mechanical Theorems'').
The use of infinitesimals to study rates of change can be found in
Indian mathematics
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta ...
, perhaps as early as 500 AD, when the astronomer and mathematician
Aryabhata (476–550) used infinitesimals to study the
orbit of the Moon. The use of infinitesimals to compute rates of change was developed significantly by
Bhāskara II (1114–1185); indeed, it has been argued that many of the key notions of differential calculus can be found in his work, such as "
Rolle's theorem
In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one stationary point somewhere between them—that is, a point wher ...
".
The mathematician,
Sharaf al-Dīn al-Tūsī (1135–1213), in his ''Treatise on Equations'', established conditions for some cubic equations to have solutions, by finding the maxima of appropriate cubic polynomials. He obtained, for example, that the maximum (for positive ) of the cubic occurs when , and concluded therefrom that the equation has exactly one positive solution when , and two positive solutions whenever . The historian of science,
Roshdi Rashed, has argued that al-Tūsī must have used the derivative of the cubic to obtain this result. Rashed's conclusion has been contested by other scholars, however, who argue that he could have obtained the result by other methods which do not require the derivative of the function to be known.
The modern development of calculus is usually credited to
Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the g ...
(1643–1727) and
Gottfried Wilhelm Leibniz (1646–1716), who provided independent and unified approaches to differentiation and derivatives. The key insight, however, that earned them this credit, was the
fundamental theorem of calculus relating differentiation and integration: this rendered obsolete most previous methods for computing areas and volumes, which had not been significantly extended since the time of
Ibn al-Haytham (Alhazen).
[Victor J. Katz (1995), "Ideas of Calculus in Islam and India", ''Mathematics Magazine'' 68 (3): 163-174 65-9 & 173-4/ref> For their ideas on derivatives, both Newton and Leibniz built on significant earlier work by mathematicians such as Pierre de Fermat (1607-1665), ]Isaac Barrow
Isaac Barrow (October 1630 – 4 May 1677) was an English Christian theologian and mathematician who is generally given credit for his early role in the development of infinitesimal calculus; in particular, for proof of the fundamental theorem ...
(1630–1677), René Descartes (1596–1650), Christiaan Huygens (1629–1695), Blaise Pascal (1623–1662) and John Wallis
John Wallis (; la, Wallisius; ) was an English clergyman and mathematician who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 he served as chief cryptographer for Parliament and, later, the royal ...
(1616–1703). Regarding Fermat's influence, Newton once wrote in a letter that "''I had the hint of this method f fluxions
F, or f, is the sixth letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''ef'' (pronounced ), and the plural is ''efs''.
Hist ...
from Fermat's way of drawing tangents, and by applying it to abstract equations, directly and invertedly, I made it general.''" Isaac Barrow is generally given credit for the early development of the derivative.[Eves, H. (1990).] Nevertheless, Newton and Leibniz remain key figures in the history of differentiation, not least because Newton was the first to apply differentiation to theoretical physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experi ...
, while Leibniz systematically developed much of the notation still used today.
Since the 17th century many mathematicians have contributed to the theory of differentiation. In the 19th century, calculus was put on a much more rigorous footing by mathematicians such as Augustin Louis Cauchy (1789–1857), Bernhard Riemann (1826–1866), and Karl Weierstrass (1815–1897). It was also during this period that the differentiation was generalized to Euclidean space and the complex plane.
Applications of derivatives
Optimization
If is a differentiable function on (or an open interval
In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
) and is a local maximum or a local minimum of , then the derivative of at is zero. Points where are called '' critical points'' or '' stationary points'' (and the value of at is called a '' critical value''). If is not assumed to be everywhere differentiable, then points at which it fails to be differentiable are also designated critical points.
If is twice differentiable, then conversely, a critical point of can be analysed by considering the second derivative of at :
* if it is positive, is a local minimum;
* if it is negative, is a local maximum;
* if it is zero, then could be a local minimum, a local maximum, or neither. (For example, has a critical point at , but it has neither a maximum nor a minimum there, whereas has a critical point at and a minimum and a maximum, respectively, there.)
This is called the second derivative test. An alternative approach, called the first derivative test, involves considering the sign of the on each side of the critical point.
Taking derivatives and solving for critical points is therefore often a simple way to find local minima or maxima, which can be useful in optimization. By the extreme value theorem, a continuous function on a closed interval must attain its minimum and maximum values at least once. If the function is differentiable, the minima and maxima can only occur at critical points or endpoints.
This also has applications in graph sketching: once the local minima and maxima of a differentiable function have been found, a rough plot of the graph can be obtained from the observation that it will be either increasing or decreasing between critical points.
In higher dimensions, a critical point of a scalar valued function is a point at which the gradient is zero. The second derivative test can still be used to analyse critical points by considering the eigenvalue
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denot ...
s of the Hessian matrix of second partial derivatives of the function at the critical point. If all of the eigenvalues are positive, then the point is a local minimum; if all are negative, it is a local maximum. If there are some positive and some negative eigenvalues, then the critical point is called a "saddle point
In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function ...
", and if none of these cases hold (i.e., some of the eigenvalues are zero) then the test is considered to be inconclusive.
Calculus of variations
One example of an optimization problem is: Find the shortest curve between two points on a surface, assuming that the curve must also lie on the surface. If the surface is a plane, then the shortest curve is a line. But if the surface is, for example, egg-shaped, then the shortest path is not immediately clear. These paths are called geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
s, and one of the most fundamental problems in the calculus of variations is finding geodesics. Another example is: Find the smallest area surface filling in a closed curve in space. This surface is called a minimal surface and it, too, can be found using the calculus of variations.
Physics
Calculus is of vital importance in physics: many physical processes are described by equations involving derivatives, called differential equations. Physics is particularly concerned with the way quantities change and develop over time, and the concept of the " time derivative" — the rate of change over time — is essential for the precise definition of several important concepts. In particular, the time derivatives of an object's position are significant in Newtonian physics:
* velocity is the derivative (with respect to time) of an object's displacement (distance from the original position)
* acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by ...
is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position.
For example, if an object's position on a line is given by
:
then the object's velocity is
:
and the object's acceleration is
:
which is constant.
Differential equations
A differential equation is a relation between a collection of functions and their derivatives. An ordinary differential equation is a differential equation that relates functions of one variable to their derivatives with respect to that variable. A partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function.
The function is often thought of as an "unknown" to be sol ...
is a differential equation that relates functions of more than one variable to their partial derivative
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Part ...
s. Differential equations arise naturally in the physical sciences, in mathematical modelling, and within mathematics itself. For example, Newton's second law, which describes the relationship between acceleration and force, can be stated as the ordinary differential equation
:
The heat equation
In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for ...
in one space variable, which describes how heat diffuses through a straight rod, is the partial differential equation
:
Here is the temperature of the rod at position and time and is a constant that depends on how fast heat diffuses through the rod.
Mean value theorem
The mean value theorem gives a relationship between values of the derivative and values of the original function. If is a real-valued function and and are numbers with , then the mean value theorem says that under mild hypotheses, the slope between the two points and is equal to the slope of the tangent line to at some point between and . In other words,
:
In practice, what the mean value theorem does is control a function in terms of its derivative. For instance, suppose that has derivative equal to zero at each point. This means that its tangent line is horizontal at every point, so the function should also be horizontal. The mean value theorem proves that this must be true: The slope between any two points on the graph of must equal the slope of one of the tangent lines of . All of those slopes are zero, so any line from one point on the graph to another point will also have slope zero. But that says that the function does not move up or down, so it must be a horizontal line. More complicated conditions on the derivative lead to less precise but still highly useful information about the original function.
Taylor polynomials and Taylor series
The derivative gives the best possible linear approximation of a function at a given point, but this can be very different from the original function. One way of improving the approximation is to take a quadratic approximation. That is to say, the linearization of a real-valued function at the point is a linear polynomial , and it may be possible to get a better approximation by considering a quadratic polynomial . Still better might be a cubic polynomial , and this idea can be extended to arbitrarily high degree polynomials. For each one of these polynomials, there should be a best possible choice of coefficients , , , and that makes the approximation as good as possible.
In the neighbourhood of , for the best possible choice is always , and for the best possible choice is always . For , , and higher-degree coefficients, these coefficients are determined by higher derivatives of . should always be , and should always be . Using these coefficients gives the Taylor polynomial of . The Taylor polynomial of degree is the polynomial of degree which best approximates , and its coefficients can be found by a generalization of the above formulas. Taylor's theorem
In calculus, Taylor's theorem gives an approximation of a ''k''-times differentiable function around a given point by a polynomial of degree ''k'', called the ''k''th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the t ...
gives a precise bound on how good the approximation is. If is a polynomial of degree less than or equal to , then the Taylor polynomial of degree equals .
The limit of the Taylor polynomials is an infinite series called the Taylor series. The Taylor series is frequently a very good approximation to the original function. Functions which are equal to their Taylor series are called analytic functions. It is impossible for functions with discontinuities or sharp corners to be analytic; moreover, there exist smooth function
In mathematical analysis, the smoothness of a function (mathematics), function is a property measured by the number of Continuous function, continuous Derivative (mathematics), derivatives it has over some domain, called ''differentiability cl ...
s which are also not analytic.
Implicit function theorem
Some natural geometric shapes, such as circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
s, cannot be drawn as the graph of a function
In mathematics, the graph of a function f is the set of ordered pairs (x, y), where f(x) = y. In the common case where x and f(x) are real numbers, these pairs are Cartesian coordinates of points in two-dimensional space and thus form a subset ...
. For instance, if , then the circle is the set of all pairs such that . This set is called the zero set of , and is not the same as the graph of , which is a paraboloid. The implicit function theorem converts relations such as into functions. It states that if is continuously differentiable, then around most points, the zero set of looks like graphs of functions pasted together. The points where this is not true are determined by a condition on the derivative of . The circle, for instance, can be pasted together from the graphs of the two functions . In a neighborhood of every point on the circle except and , one of these two functions has a graph that looks like the circle. (These two functions also happen to meet and , but this is not guaranteed by the implicit function theorem.)
The implicit function theorem is closely related to the inverse function theorem, which states when a function looks like graphs of invertible functions pasted together.
See also
* Differential (calculus)
* Numerical differentiation
* Techniques for differentiation
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.
Elementary rules of differentiation
Unless otherwise stated, all functions are functions of real numbers (R) that return real ...
* List of calculus topics
* Notation for differentiation
*
Notes
References
Citations
Works cited
*
Other sources
*
*Boman, Eugene, and Robert Rogers. ''Differential Calculus: From Practice to Theory''. 2022, personal.psu.edu/ecb5/DiffCalc.pd
{{Authority control
Differential calculus,
Calculus