Charged Current Interaction
Charged current interactions (as opposed to neutral current interactions) are one of two primary channels in which subatomic particles can interact by means of the weak force. These interactions are specifically mediated by the and bosons. Overview Charged current interactions are the most easily detected class of weak interactions. The weak force is best known for mediating nuclear decay. It has very short range, but is the only force (apart from gravity) to interact with neutrinos. The weak force is communicated via the W and Z exchange particles. Of these, the W-boson has either a positive or negative electric charge, and mediates neutrino absorption and emission by or with an electrically charged particle. During these processes, the W-boson induces electron or positron emission or absorption, or changing the flavour of a quark as well as its electrical charge, such as in beta decay or K-capture. By contrast, the Z particle is electrically neutral, and exchange of a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutral Current
Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons. In simple terms The weak force is best known for its role in nuclear decay. It has very short range but (apart from gravity) is the only force to interact with neutrinos. Like other subatomic forces, the weak force is mediated via exchange particles. Perhaps the most well known of the exchange particles for the weak force is the W particle which is involved in beta decay. W particles have electric charge – there are both positive and negative W particles – however the Z boson is also an exchange particle for the weak force but does ''not'' have any electrical charge. Exchang ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Z-boson
In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and . The bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The bosons have a magnetic moment, but the has none. All three of these particles are very short-lived, with a half-life of about . Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics. The bosons are named after the ''weak'' force. The physicist Steven Weinberg named the additional particle the " particle", — The electroweak unification paper. and later gave the explanation that it was the last additional particle needed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Higgs Boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson that Coupling (physics), couples to (interacts with) particles whose mass arises from their interactions with the Higgs Field, has zero Spin (physics), spin, even (positive) Parity (physics), parity, no electric charge, and no color charge, colour charge. It is also very unstable, particle decay, decaying into other particles almost immediately upon generation. The Higgs field is a scalar field with two neutral and two electrically charged components that form a complex doublet (physics), doublet of the weak isospin SU(2) symmetry. Its "Spontaneous symmetry breaking#Sombrero potential, sombrero potential" leads it to take a nonzero value everywhere (inclu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauge Boson
In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge bosons, usually as virtual particles. Photons, W and Z bosons, and gluons are gauge bosons. All known gauge bosons have a spin of 1 and therefore are vector bosons. For comparison, the Higgs boson has spin zero and the hypothetical graviton has a spin of 2. Gauge bosons are different from the other kinds of bosons: first, fundamental scalar bosons (the Higgs boson); second, mesons, which are composite bosons, made of quarks; third, larger composite, non-force-carrying bosons, such as certain atoms. Gauge bosons in the Standard Model The Standard Model of particle physics recognizes four kinds of gauge bosons: photons, which carry the electromagnetic interaction; W and Z bosons, which carry the weak interaction; and gluons, which carr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electroweak
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV,The particular number 246 GeV is taken to be the vacuum expectation value v = (G_\text \sqrt)^ of the Higgs field (where G_\text is the Fermi coupling constant). they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been see ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated some success in providing experimental predictions, it leaves some physics be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chirality (physics)
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Chirality and helicity The helicity of a particle is positive ("right-handed") if the direction of its spin is the same as the direction of its motion. It is negative ("left-handed") if the directions of spin and motion are opposite. So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards. Mathematically, ''helicity'' is the sign of the projection of the spin vector onto the momentum vector: "left" is negative, "right" is positive. The chirality of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermion
In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles include all quarks and leptons and all composite particles made of an even and odd, odd number of these, such as all baryons and many atoms and atomic nucleus, nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics. Some fermions are elementary particles (such as electrons), and some are composite particles (such as protons). For example, according to the spin-statistics theorem in Theory of relativity, relativistic quantum field theory, particles with integer Spin (physics), spin are bosons. In contrast, particles with half-integer spin are fermions. In addition to the spin characteristic, fermions have another specific property: they possess conserved baryon or lepton quantum numbers. Therefore, what is usually referr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scattering Amplitude
In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process. Formulation Scattering in quantum mechanics begins with a physical model based on the Schrodinger wave equation for probability amplitude \psi: -\frac\nabla^2\psi + V\psi = E\psi where \mu is the reduced mass of two scattering particles and is the energy of relative motion. For scattering problems, a stationary (time-independent) wavefunction is sought with behavior at large distances (asymptotic form) in two parts. First a plane wave represents the incoming source and, second, a spherical wave emanating from the scattering center placed at the coordinate origin represents the scattered wave: \psi(r\rightarrow \infty) \sim e^ + f(\mathbf_f,\mathbf_i)\frac The scattering amplitude, f(\mathbf_f,\mathbf_i), represents the amplitude that the target will scatter into the direction \mathbf_f. In gener ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak Hypercharge
In the Standard Model (mathematical formulation), Standard Model of electroweak interactions of particle physics, the weak hypercharge is a quantum number relating the electric charge and the third component of weak isospin. It is frequently denoted Y_\mathsf and corresponds to the gauge symmetry U(1). It is Conservation law (physics), conserved (only terms that are overall weak-hypercharge neutral are allowed in the Lagrangian). However, one of the interactions is with the Higgs field. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. This changes their weak hypercharge (and weak isospin ). Only a specific combination of them, \ Q = T_3 + \tfrac\, Y_\mathsf\ (electric charge), is conserved. Mathematically, weak hypercharge appears similar to the Gell-Mann–Nishijima formula for the hypercharge of strong interactions (which is not conserved in weak interactions and is zero for leptons). In the electroweak ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak Isospin
In particle physics, weak isospin is a quantum number relating to the electrically charged part of the weak interaction: Particles with half-integer weak isospin can interact with the bosons; particles with zero weak isospin do not. Weak isospin is a construct parallel to the idea of isospin under the strong interaction. Weak isospin is usually given the symbol or , with the third component written as or is more important than ; typically "weak isospin" is used as short form of the proper term "3rd component of weak isospin". It can be understood as the eigenvalue of a charge operator. Notation This article uses and for weak isospin and its projection. Regarding ambiguous notation, is also used to represent the 'normal' (strong force) isospin, same for its third component a.k.a. or . Aggravating the confusion, is also used as the symbol for the Topness quantum number. Conservation law The weak isospin conservation law relates to the conservation of \ T_3\ ; ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-capture
Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. This process thereby changes a nuclear proton to a neutron and simultaneously causes the emission of an electron neutrino. : : or when written as a nuclear reaction equation, ^_e + ^_p -> ^_n + ^_ ν_e Since this single emitted neutrino carries the entire decay energy, it has this single characteristic energy. Similarly, the momentum of the neutrino emission causes the daughter atom to recoil with a single characteristic momentum. The resulting daughter nuclide, if it is in an excited state, then transitions to its ground state. Usually, a gamma ray is emitted during this transition, but nuclear de-excitation may also take place by internal conversion. Following capture of an inner electron from the atom, an outer electron r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |