Big-line-big-clique Conjecture
   HOME



picture info

Big-line-big-clique Conjecture
The big-line-big-clique conjecture is an unsolved problem in discrete geometry, stating that finite sets of many points in the Euclidean plane either have many collinear points, or they have many points that are all mutually visible to each other (no third point blocks any two of them from seeing each other). Statement and history More precisely, the big-line big-clique conjecture states that, for any positive integers k and \ell there should exist another number n_, such that every set of n_ points contains \ell collinear points (a "big line"), k mutually-visible points (a "big clique"), or both. The big-line-big-clique conjecture was posed by Jan Kára, Attila Pór, and David R. Wood in a 2005 publication. It has led to much additional research on point-to-point visibility in point sets. Partial results Finite point sets in general position (no three collinear) do always contain a big clique, so the conjecture is true for \ell\le 3. Additionally, finite point sets that have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Convex Grid Subset
Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytope, a polytope with a convex set of points ** Convex metric space, a generalization of the convexity notion in abstract metric spaces * Convex function, when the line segment between any two points on the graph of the function lies above or on the graph * Convex conjugate, of a function * Convexity (algebraic geometry), a restrictive technical condition for algebraic varieties originally introduced to analyze Kontsevich moduli spaces Economics and finance * Convexity (finance), second derivatives in financial modeling generally * Convexity in economics * Bond convexity, a measure of the sensitivity of the duration of a bond to changes in interest rates * Convex preferences, an individual's ordering of various outcomes Other uses * Convex Com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Induced Subgraph
In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges, from the original graph, connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) be any graph, and let S\subseteq V be any subset of vertices of . Then the induced subgraph G is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S . That is, for any two vertices u,v\in S , u and v are adjacent in G if and only if they are adjacent in G . The same definition works for undirected graphs, directed graphs, and even multigraphs. The induced subgraph G may also be called the subgraph induced in G by S , or (if context makes the choice of G unambiguous) the induced subgraph of S . Examples Important types of induced subgraphs include the following. * Induced paths are induced subgraphs that are paths. The shortest path between any two vertices in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canadian Mathematical Bulletin
The ''Canadian Mathematical Bulletin'' () is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antonio Lei and Javad Mashreghi. The journal publishes short articles in all areas of mathematics that are of sufficient interest to the general mathematical public. Abstracting and indexing The journal is abstracted in:Abstracting and indexing services
for the Canadian Mathematical Bulletin. * '''' * ''

Discrete & Computational Geometry
'' Discrete & Computational Geometry'' is a peer-reviewed mathematics journal published quarterly by Springer. Founded in 1986 by Jacob E. Goodman and Richard M. Pollack, the journal publishes articles on discrete geometry and computational geometry. Abstracting and indexing The journal is indexed in: * ''Mathematical Reviews'' * '' Zentralblatt MATH'' * ''Science Citation Index'' * ''Current Contents ''Current Contents'' is a rapid alerting service database from Clarivate, formerly the Institute for Scientific Information and Thomson Reuters. It is published online and in several different printed subject sections. History ''Current Contents ...'' Notable articles Two articles published in ''Discrete & Computational Geometry'', one by Gil Kalai in 1992 with a proof of a subexponential upper bound on the diameter of a polytope and another by Samuel Ferguson in 2006 on the Kepler conjecture on optimal three-dimensional sphere packing, earned their authors the Fulk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graphs And Combinatorics
''Graphs and Combinatorics'' (ISSN 0911-0119, abbreviated ''Graphs Combin.'') is a peer-reviewed academic journal in graph theory, combinatorics, and discrete geometry published by Springer Japan. Its editor-in-chief is Katsuhiro Ota of Keio University. The journal was first published in 1985. Its founding editor in chief was Hoon Heng Teh of Singapore, the president of the Southeast Asian Mathematics Society, and its managing editor was Jin Akiyama. Originally, it was subtitled "An Asian Journal". In most years since 1999, it has been ranked as a second-quartile journal in discrete mathematics and theoretical computer science by SCImago Journal Rank The SCImago Journal Rank (SJR) indicator is a measure of the prestige of scholarly journals that accounts for both the number of citations received by a journal and the prestige of the journals where the citations come from. Etymology SCImago ..... References {{reflist Academic journals established in 1985 Combinatorics jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Infinitary
In mathematics and logic, an operation is finitary if it has finite arity, i.e. if it has a finite number of input values. Similarly, an infinitary operation is one with an infinite number of input values. In standard mathematics, an operation is finitary by definition. Therefore, these terms are usually only used in the context of infinitary logic. Finitary argument A finitary argument is one which can be translated into a finite set of symbolic propositions starting from a finiteThe number of axioms ''referenced'' in the argument will necessarily be finite since the proof is finite, but the number of axioms from which these are ''chosen'' is infinite when the system has axiom schemes, e.g. the axiom schemes of propositional calculus. set of axioms. In other words, it is a proof (including all assumptions) that can be written on a large enough sheet of paper. By contrast, infinitary logic studies logics that allow infinitely long statements and proofs. In such a logic, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heptagon
In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon. The heptagon is sometimes referred to as the septagon, using ''Wikt:septa-, septa-'' (an elision of ''Wikt:septua-, septua-''), a Latin-derived numerical prefix, rather than ''Wikt:hepta-, hepta-'', a Greek language, Greek-derived numerical prefix (both are cognate), together with the suffix ''-gon'' for , meaning angle. Regular heptagon A regular polygon, regular heptagon, in which all sides and all angles are equal, has internal angles of 5π/7 radians (128 degree (angle), degrees). Its Schläfli symbol is . Area The area (''A'') of a regular heptagon of side length ''a'' is given by: :A = \fraca^2 \cot \frac \simeq 3.634 a^2. This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with Vertex (geometry), vertices at the center and at the heptagon's vertices, and then halving each triangle using the apothem as the common side. The apothem is half the cotangent of \pi/7 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is defined as a hexagon that is both equilateral and equiangular. In other words, a hexagon is said to be regular if the edges are all equal in length, and each of its internal angle is equal to 120°. The Schläfli symbol denotes this polygon as \ . However, the regular hexagon can also be considered as the cutting off the vertices of an equilateral triangle, which can also be denoted as \mathrm\ . A regular hexagon is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an inscribed circle). The common length of the sides equals the radius of the circumscribed circle or circumcircle, which equals \tfrac times the apothem (radius of the inscribed circle). Measurement The longest diagonals of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagon
In geometry, a pentagon () is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is 540°. A pentagon may be simple or list of self-intersecting polygons, self-intersecting. A self-intersecting ''regular pentagon'' (or ''star polygon, star pentagon'') is called a pentagram. Regular pentagons A ''regular polygon, regular pentagon'' has Schläfli symbol and interior angles of 108°. A ''regular polygon, regular pentagon'' has five lines of reflectional symmetry, and rotational symmetry of order 5 (through 72°, 144°, 216° and 288°). The diagonals of a convex polygon, convex regular pentagon are in the golden ratio to its sides. Given its side length t, its height H (distance from one side to the opposite vertex), width W (distance between two farthest separated points, which equals the diagonal length D) and circumradius R are given by: :\begin H &= \frac~t \approx 1.539~t, \\ W= D &= \frac~t\approx 1.618~t, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convex Position
In discrete and computational geometry, a set of points in the Euclidean plane or a higher-dimensional Euclidean space is said to be in convex position or convex independent if none of the points can be represented as a convex combination of the others. A finite set of points is in convex position if all of the points are vertices of their convex hull. More generally, a family of convex sets is said to be in convex position if they are pairwise disjoint and none of them is contained in the convex hull of the others. An assumption of convex position can make certain computational problems easier to solve. For instance, the traveling salesman problem, NP-hard for arbitrary sets of points in the plane, is trivial for points in convex position: the optimal tour is the convex hull. Similarly, the minimum-weight triangulation of planar point sets is NP-hard for arbitrary point sets, but solvable in polynomial time by dynamic programming for points in convex position. The Erdős–Sze ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Polygon
In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). Equivalently, a polygon is convex if every line that does not contain any edge intersects the polygon in at most two points. Strictly convex polygon A convex polygon is ''strictly'' convex if no line contains more than two vertices of the polygon. In a convex polygon, all interior angles are less than ''or equal'' to 180 degrees, while in a strictly convex polygon all interior angles are strictly less than 180 degrees. Properties The following properties of a simple polygon are all equivalent to convexity: *Every internal angle is less than or equal to 180 degrees. *Every point on every line segment between two points inside or on the boundary of the polygon remains inside or on the bou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Happy Ending Problem
In mathematics, the "happy ending problem" (so named by Paul Erdős because it led to the marriage of George Szekeres and Esther Szekeres, Esther Klein) is the following statement: This was one of the original results that led to the development of Ramsey theory. The happy ending theorem can be proven by a simple case analysis: if four or more points are vertices of the convex hull, any four such points can be chosen. If on the other hand, the convex hull has the form of a triangle with two points inside it, the two inner points and one of the triangle sides can be chosen. See for an illustrated explanation of this proof, and for a more detailed survey of the problem. The Erdős–Szekeres conjecture states precisely a more general relationship between the number of points in a general-position point set and its largest subset forming a convex polygon, namely that the smallest number of points for which any general position arrangement contains a convex subset of n points ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]