Apeirogonal Prism
In geometry, an apeirogonal prism or infinite prism is the arithmetic limit of the family of prisms; it can be considered an infinite polyhedron or a tiling of the plane.Conway (2008), p.263 Thorold Gosset called it a ''2-dimensional semi-check'', like a single row of a checkerboard. If the sides are squares, it is a uniform tiling. If colored with two sets of alternating squares it is still uniform. File:Infinite prism alternating.svg, Uniform variant with alternate colored square faces. File:Infinite_bipyramid.svg, Its dual tiling is an ''apeirogonal bipyramid''. Related tilings and polyhedra The apeirogonal tiling is the arithmetic limit of the family of prisms t or ''p''.4.4, as ''p'' tends to infinity, thereby turning the prism into a Euclidean tiling. An alternation operation can create an apeirogonal antiprism composed of three triangles and one apeirogon at each vertex. : Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Apeirogon
In geometry, an apeirogon () or infinite polygon is a polygon with an infinite number of sides. Apeirogons are the rank 2 case of infinite polytopes. In some literature, the term "apeirogon" may refer only to the regular apeirogon, with an infinite dihedral group of symmetries. Definitions Geometric apeirogon Given a point ''A''0 in a Euclidean space and a translation ''S'', define the point ''Ai'' to be the point obtained from ''i'' applications of the translation ''S'' to ''A''0, so ''Ai'' = ''Si''(''A''0). The set of vertices ''Ai'' with ''i'' any integer, together with edges connecting adjacent vertices, is a sequence of equal-length segments of a line, and is called the regular apeirogon as defined by H. S. M. Coxeter. A regular apeirogon can be defined as a partition of the Euclidean line ''E''1 into infinitely many equal-length segments. It generalizes the regular ''n''-gon, which may be defined as a partition of the circle ''S''1 into ''finitely'' many equal-length ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclidean Tilings
Euclidean (or, less commonly, Euclidian) is an adjective derived from the name of Euclid, an ancient Greek mathematician. Geometry *Euclidean space, the two-dimensional plane and three-dimensional space of Euclidean geometry as well as their higher dimensional generalizations *Euclidean geometry, the study of the properties of Euclidean spaces *Non-Euclidean geometry, systems of points, lines, and planes analogous to Euclidean geometry but without uniquely determined parallel lines *Euclidean distance, the distance between pairs of points in Euclidean spaces * Euclidean ball, the set of points within some fixed distance from a center point Number theory *Euclidean division, the division which produces a quotient and a remainder *Euclidean algorithm, a method for finding greatest common divisors *Extended Euclidean algorithm, a method for solving the Diophantine equation ''ax'' + ''by'' = ''d'' where ''d'' is the greatest common divisor of ''a'' and ''b'' *Euclid's lemma: if a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Apeirogonal Tilings
In geometry, an apeirogonal tiling is a tessellation of the Euclidean plane, hyperbolic plane, or some other two-dimensional space by apeirogons. Tilings of this type include: *Order-2 apeirogonal tiling, Euclidean tiling of two half-spaces *Order-3 apeirogonal tiling, hyperbolic tiling with 3 apeirogons around a vertex *Order-4 apeirogonal tiling, hyperbolic tiling with 4 apeirogons around a vertex *Order-5 apeirogonal tiling, hyperbolic tiling with 5 apeirogons around a vertex *Infinite-order apeirogonal tiling, hyperbolic tiling with an infinite number of apeirogons around a vertex The vertices of an order-k apeirogonal tiling form a Bethe lattice, a regular infinite tree. See also *Apeirogonal antiprism *Apeirogonal prism *Apeirohedron References {{set index article, mathematics Apeirogonal tilings ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Omnitruncation
In geometry, an omnitruncation of a convex polytope is a simple polytope of the same dimension, having a vertex for each flag of the original polytope and a facet for each face of any dimension of the original polytope. Omnitruncation is the dual operation to barycentric subdivision. Because the barycentric subdivision of any polytope can be realized as another polytope, the same is true for the omnitruncation of any polytope. When omnitruncation is applied to a regular polytope (or honeycomb) it can be described geometrically as a Wythoff construction that creates a maximum number of facets. It is represented in a Coxeter–Dynkin diagram with all nodes ringed. It is a ''shortcut'' term which has a different meaning in progressively-higher-dimensional polytopes: * Uniform polytope truncation operators ** For regular polygons: An ordinary truncation, t_\ = t\ = \. *** Coxeter-Dynkin diagram ** For uniform polyhedra (3-polytopes): A cantitruncation, t_\ = tr\. (Application ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truncation (geometry)
In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new Facet (geometry), facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. Uniform truncation In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths. There are no degrees of freedom, and it represents a fixed geometric, just like the regular polyhedra. In general all single ringed uniform polytopes have a uniform truncation. For example, the icosidodecahedron, represented as Schläfli symbols r or \begin 5 \\ 3 \end, and Coxeter-Dynkin diagram or has a uniform truncation, the truncate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cantellation (geometry)
In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tilings and honeycombs. Cantellating a polyhedron is also rectifying its rectification. Cantellation (for polyhedra and tilings) is also called '' expansion'' by Alicia Boole Stott: it corresponds to moving the faces of the regular form away from the center, and filling in a new face in the gap for each opened edge and for each opened vertex. Notation A cantellated polytope is represented by an extended Schläfli symbol ''t''0,2 or ''r''\beginp\\q\\...\end or ''rr''. For polyhedra, a cantellation offers a direct sequence from a regular polyhedron to its dual. Example: cantellation sequence between cube and octahedron: Example: a cuboctahedron is a cantellated tetrahedron. For higher-dimensional polytopes, a cantellation offers a direc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rectification (geometry)
In Euclidean geometry, rectification, also known as critical truncation or complete-truncation, is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the rectified facets of the original polytope. A rectification operator is sometimes denoted by the letter with a Schläfli symbol. For example, is the rectified cube, also called a cuboctahedron, and also represented as \begin 4 \\ 3 \end. And a rectified cuboctahedron is a rhombicuboctahedron, and also represented as r\begin 4 \\ 3 \end. Conway polyhedron notation uses for ambo as this operator. In graph theory this operation creates a medial graph. The rectification of any regular self-dual polyhedron or tiling will result in another regular polyhedron or tiling with a tiling order of 4, for example the tetrahedron becoming an octahedron As a special case, a square til ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Apeirogonal Tiling
In geometry, an apeirogonal tiling is a tessellation of the Euclidean plane, hyperbolic plane, or some other two-dimensional space by apeirogons. Tilings of this type include: * Order-2 apeirogonal tiling, Euclidean tiling of two half-spaces * Order-3 apeirogonal tiling, hyperbolic tiling with 3 apeirogons around a vertex *Order-4 apeirogonal tiling, hyperbolic tiling with 4 apeirogons around a vertex * Order-5 apeirogonal tiling, hyperbolic tiling with 5 apeirogons around a vertex * Infinite-order apeirogonal tiling, hyperbolic tiling with an infinite number of apeirogons around a vertex The vertices of an order-k apeirogonal tiling form a Bethe lattice In statistical mechanics and mathematics, the Bethe lattice (also called a regular tree) is an infinite symmetric regular tree where all vertices have the same number of neighbors. The Bethe lattice was introduced into the physics literature by ..., a regular infinite tree. See also * Apeirogonal antiprism * Apeirogonal prism * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Polyhedra
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular (if also face- and edge-transitive), quasi-regular (if also edge-transitive but not face-transitive), or semi-regular (if neither edge- nor face-transitive). The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra. There are two infinite classes of uniform polyhedra, together with 75 other polyhedra. They are 2 infinite classes of prisms and antiprisms, the convex polyhedrons as in 5 Platonic solids and 13 Archimedean solids—2 quasiregular and 11 semiregular— the non-convex star polyhedra as in 4 Kepler–Poinsot polyhedra and 53 uniform star polyhedra—14 quasiregular and 39 semiregular. There are also many degenerate uniform polyhedra with pairs of edges that coincide, inclu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinite Antiprism
In geometry, an apeirogonal antiprism or infinite antiprismConway (2008), p. 263 is the arithmetic limit of the family of antiprisms; it can be considered an infinite polyhedron or a tiling of the plane. If the sides are equilateral triangles, it is a uniform tiling. In general, it can have two sets of alternating congruent isosceles triangles, surrounded by two half-planes. Related tilings and polyhedra The apeirogonal antiprism is the arithmetic limit of the family of antiprisms sr or ''p''.3.3.3, as ''p'' tends to infinity, thereby turning the antiprism into a Euclidean tiling. File:Infinite prism.svg, The apeirogonal antiprism can be constructed by applying an alternation operation to an apeirogonal prism. File:Apeirogonal trapezohedron.svg, The dual tiling of an apeirogonal antiprism is an ''apeirogonal deltohedron''. Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Apeirogonal Antiprism
In geometry, an apeirogonal antiprism or infinite antiprismConway (2008), p. 263 is the arithmetic limit of the family of antiprisms; it can be considered an infinite polyhedron or a tiling of the plane. If the sides are equilateral triangles, it is a uniform tiling. In general, it can have two sets of alternating congruent isosceles triangles, surrounded by two half-planes. Related tilings and polyhedra The apeirogonal antiprism is the arithmetic limit of the family of antiprisms sr or ''p''.3.3.3, as ''p'' tends to infinity, thereby turning the antiprism into a Euclidean tiling. File:Infinite prism.svg, The apeirogonal antiprism can be constructed by applying an alternation operation to an apeirogonal prism. File:Apeirogonal trapezohedron.svg, The dual tiling of an apeirogonal antiprism is an ''apeirogonal deltohedron''. Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |