HOME





Apeirogonal Tilings
In geometry, an apeirogonal tiling is a tessellation of the Euclidean plane, hyperbolic plane, or some other two-dimensional space by apeirogons. Tilings of this type include: *Order-2 apeirogonal tiling, Euclidean tiling of two half-spaces *Order-3 apeirogonal tiling, hyperbolic tiling with 3 apeirogons around a vertex *Order-4 apeirogonal tiling, hyperbolic tiling with 4 apeirogons around a vertex *Order-5 apeirogonal tiling, hyperbolic tiling with 5 apeirogons around a vertex *Infinite-order apeirogonal tiling, hyperbolic tiling with an infinite number of apeirogons around a vertex The vertices of an order-k apeirogonal tiling form a Bethe lattice, a regular infinite tree. See also *Apeirogonal antiprism *Apeirogonal prism *Apeirohedron References

{{set index article, mathematics Apeirogonal tilings ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tessellation
A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern. Some special kinds include '' regular tilings'' with regular polygonal tiles all of the same shape, and '' semiregular tilings'' with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that lacks a repeating pattern is called "non-periodic". An '' aperiodic tiling'' uses a small set of tile shapes that cannot form a repeating pattern (an aperiodic set of prototiles). A '' tessellation of space'', also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions. A real physical tessellation is a tiling made of materials such as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Plane
In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of each point (mathematics), point. It is an affine space, which includes in particular the concept of parallel lines. It has also measurement, metrical properties induced by a Euclidean distance, distance, which allows to define circles, and angle, angle measurement. A Euclidean plane with a chosen Cartesian coordinate system is called a ''Cartesian plane''. The set \mathbb^2 of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called ''the'' Euclidean plane or ''standard Euclidean plane'', since every Euclidean plane is isomorphic to it. History Books I through IV and VI of Euclid's Elements dealt with two-dimensional geometry, developing such notions as similarity of shapes, the Pythagor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane. The hyperboloid model of hyperbolic geometry provides a representation of events one temporal unit into the future in Minkowski space, the basis of special relativity. Eac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apeirogon
In geometry, an apeirogon () or infinite polygon is a polygon with an infinite number of sides. Apeirogons are the rank 2 case of infinite polytopes. In some literature, the term "apeirogon" may refer only to the regular apeirogon, with an infinite dihedral group of symmetries. Definitions Geometric apeirogon Given a point ''A''0 in a Euclidean space and a translation ''S'', define the point ''Ai'' to be the point obtained from ''i'' applications of the translation ''S'' to ''A''0, so ''Ai'' = ''Si''(''A''0). The set of vertices ''Ai'' with ''i'' any integer, together with edges connecting adjacent vertices, is a sequence of equal-length segments of a line, and is called the regular apeirogon as defined by H. S. M. Coxeter. A regular apeirogon can be defined as a partition of the Euclidean line ''E''1 into infinitely many equal-length segments. It generalizes the regular ''n''-gon, which may be defined as a partition of the circle ''S''1 into ''finitely'' many equal-length ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order-2 Apeirogonal Tiling
In geometry, an order-2 apeirogonal tiling, apeirogonal dihedron, or infinite dihedronConway (2008), p. 263 is a tessellation (gap-free filling with repeated shapes) of the plane consisting of two apeirogons. It may be considered an improper regular tiling of the Euclidean plane, with Schläfli symbol Two apeirogons joined along all their edges can completely fill the entire plane, as an apeirogon is infinite in size and has an interior angle of 180°, which is half of a full 360°. Related tilings and polyhedra Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and cantellated forms are duplicated, and as two times infinity is also infinity, the truncated and omnitruncated forms are also duplicated, therefore reducing the number of unique forms to four: the apeirogonal tiling, the apeirogonal hosohedron, the apeirogonal prism, and the apeirogonal antiprism. See also * Orde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order-3 Apeirogonal Tiling
In geometry, the order-3 apeirogonal tiling is a regular hyperbolic tiling, regular tiling of the Hyperbolic geometry, hyperbolic plane. It is represented by the Schläfli symbol , having three regular Apeirogon#Hyperbolic geometry, apeirogons around each vertex. Each apeirogon is Circumscribed circle, inscribed in a horocycle. The order-2 apeirogonal tiling represents an infinite dihedron in the Euclidean plane as . Images Each apeirogon face is circumscribed by a horocycle, which looks like a circle in a Poincaré disk model, internally tangent to the projective circle boundary. : The edges of the tiling, shown in blue, form an order-3 Cayley tree. Uniform colorings Like the Euclidean Hexagonal tiling#Uniform colorings, hexagonal tiling, there are 3 uniform colorings of the ''order-3 apeirogonal tiling'', each from different reflective triangle group domains: Symmetry The dual to this tiling represents the fundamental domains of [(∞,∞,∞)] (*∞∞∞) symmetry. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order-4 Apeirogonal Tiling
In geometry, the order-4 apeirogonal tiling is a List of regular polytopes#Hyperbolic tilings, regular Tessellation, tiling of the Hyperbolic geometry, hyperbolic plane. It has Schläfli symbol of . Symmetry This tiling represents the mirror lines of *2∞ symmetry. Its dual tiling represents the fundamental domains of orbifold notation *∞∞∞∞ symmetry, a square domain with four ideal vertices. : Uniform colorings Like the Euclidean Square tiling#Uniform colorings, square tiling there are 9 uniform colorings for this tiling, with 3 uniform colorings generated by triangle reflective domains. A fourth can be constructed from an infinite square symmetry (*∞∞∞∞) with 4 colors around a vertex. The checker board, r, coloring defines the fundamental domains of [(∞,4,4)], (*∞44) symmetry, usually shown as black and white domains of reflective orientations. Related polyhedra and tiling This tiling is also topologically related as a part of sequence of regular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order-5 Apeirogonal Tiling
In geometry, the order-5 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of . Symmetry The dual to this tiling represents the fundamental domains of ��,5*symmetry, orbifold notation *∞∞∞∞∞ symmetry, a pentagonal domain with five ideal vertices. : The ''order-5 apeirogonal tiling'' can be uniformly colored with 5 colored apeirogons around each vertex, and coxeter diagram: , except ultraparallel branches on the diagonals. Related polyhedra and tiling This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with five faces per vertex, starting with the icosahedron, with Schläfli symbol , and Coxeter diagram , with n progressing to infinity. See also *Tilings of regular polygons *List of uniform planar tilings *List of regular polytopes This article lists the regular polytopes in Euclidean, spherical and hyperbolic spaces. Overview This table shows a summary of regular polyto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite-order Apeirogonal Tiling
The infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of , which means it has countably infinitely many apeirogons around all its ideal vertices. Symmetry This tiling represents the fundamental domains of *∞ symmetry. Uniform colorings This tiling can also be alternately colored in the ∞,∞,∞)symmetry from 3 generator positions. Related polyhedra and tiling The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain. : : a or = ∪ See also * Tilings of regular polygons * List of uniform planar tilings *List of regular polytopes References * John Horton Conway John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician. He was active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many b ..., ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bethe Lattice
In statistical mechanics and mathematics, the Bethe lattice (also called a regular tree) is an infinite symmetric regular tree where all vertices have the same number of neighbors. The Bethe lattice was introduced into the physics literature by Hans Bethe in 1935. In such a graph, each node is connected to ''z'' neighbors; the number ''z'' is called either the coordination number or the degree, depending on the field. Due to its distinctive topological structure, the statistical mechanics of lattice models on this graph are often easier to solve than on other lattices. The solutions are related to the often used Bethe ansatz for these systems. Basic properties When working with the Bethe lattice, it is often convenient to mark a given vertex as the root, to be used as a reference point when considering local properties of the graph. Sizes of layers Once a vertex is marked as the root, we can group the other vertices into layers based on their distance from the root. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Apeirogonal Antiprism
In geometry, an apeirogonal antiprism or infinite antiprismConway (2008), p. 263 is the arithmetic limit of the family of antiprisms; it can be considered an infinite polyhedron or a tiling of the plane. If the sides are equilateral triangles, it is a uniform tiling. In general, it can have two sets of alternating congruent isosceles triangles, surrounded by two half-planes. Related tilings and polyhedra The apeirogonal antiprism is the arithmetic limit of the family of antiprisms sr or ''p''.3.3.3, as ''p'' tends to infinity, thereby turning the antiprism into a Euclidean tiling. File:Infinite prism.svg, The apeirogonal antiprism can be constructed by applying an alternation operation to an apeirogonal prism. File:Apeirogonal trapezohedron.svg, The dual tiling of an apeirogonal antiprism is an ''apeirogonal deltohedron''. Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]