HOME



picture info

Zermelo
Ernst Friedrich Ferdinand Zermelo (; ; 27 July 187121 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel axiomatic set theory and his proof of the well-ordering theorem. Furthermore, his 1929 work on ranking chess players is the first description of a model for pairwise comparison that continues to have a profound impact on various applied fields utilizing this method. Life Ernst Zermelo graduated from Berlin's Luisenstädtisches Gymnasium (now ) in 1889. He then studied mathematics, physics and philosophy at the University of Berlin, the University of Halle, and the University of Freiburg. He finished his doctorate in 1894 at the University of Berlin, awarded for a dissertation on the calculus of variations (''Untersuchungen zur Variationsrechnung''). Zermelo remained at the University of Berlin, where he was appointed assistant to Planck, under whos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zermelo's Theorem (game Theory)
In game theory, Zermelo's theorem is a theorem about finite two-person games of perfect information in which the players move alternately and in which chance does not affect the decision making process. It says that if the game cannot end in a draw, then one of the two players must have a winning strategy (i.e. can force a win). An alternate statement is that for a game meeting all of these conditions except the condition that a draw is now possible, then either the first-player can force a win, or the second-player can force a win, or both players can at least force a draw. The theorem is named after Ernst Zermelo, a German mathematician and logician, who proved the theorem for the example game of chess in 1913. Example Zermelo's theorem can be applied to all finite-stage two-player games with complete information and alternating moves. The game must satisfy the following criteria: there are two players in the game; the game is of perfect information; the board game is finite; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zermelo Set Theory
Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text (translated into English) and original numbering. The axioms of Zermelo set theory The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set. Later versions of set theory often assume that all objects are sets so there are no urelements and there is no need for the unary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zermelo–Fraenkel Set Theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zermelo's Navigation Problem
In mathematical optimization, Zermelo's navigation problem, proposed in 1931 by Ernst Zermelo, is a classic optimal control problem that deals with a boat navigating on a body of water, originating from a point A to a destination point B. The boat is capable of a certain maximum speed, and the goal is to derive the best possible control to reach B in the least possible time. Without considering external forces such as current and wind, the optimal control is for the boat to always head towards B. Its path then is a line segment from A to B, which is trivially optimal. With consideration of current and wind, if the combined force applied to the boat is non-zero the control for no current and wind does not yield the optimal path. History In his 1931 article, Ernst Zermelo formulates the following problem: This is an extension of the classical optimisation problem for geodesics – minimising the length of a curve I = \int_a^b \sqrt\, d x connecting points A and B , with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Foundations Of Mathematics
Foundations of mathematics are the mathematical logic, logical and mathematics, mathematical framework that allows the development of mathematics without generating consistency, self-contradictory theories, and to have reliable concepts of theorems, proof (mathematics), proofs, algorithms, etc. in particular. This may also include the philosophy of mathematics, philosophical study of the relation of this framework with reality. The term "foundations of mathematics" was not coined before the end of the 19th century, although foundations were first established by the ancient Greek philosophers under the name of Aristotle's logic and systematically applied in Euclid's Elements, Euclid's ''Elements''. A mathematical assertion is considered as truth (mathematics), truth only if it is a theorem that is proved from true premises by means of a sequence of syllogisms (inference rules), the premises being either already proved theorems or self-evident assertions called axioms or postulat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Well-ordering Theorem
In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set ''X'' is ''well-ordered'' by a strict total order if every non-empty subset of ''X'' has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also ). Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem. One can conclude from the well-ordering theorem that every set is susceptible to transfinite induction, which is considered by mathematicians to be a powerful technique. One famous consequence of the theorem is the Banach–Tarski paradox. History Georg Cantor considered the well-ordering theorem to be a "fundamental principle of thought". However, it is considered difficult or even impossible to visualize a well-ordering of \mathbb, the set o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zermelo's Categoricity Theorem
Zermelo's categoricity theorem was proven by Ernst Zermelo in 1930. It states that all models of a certain second-order version of the Zermelo-Fraenkel axioms of set theory are isomorphic to a member of a certain class of sets. Statement Let \mathrm^2 denote Zermelo-Fraenkel set theory, but with a second-order version of the axiom of replacement formulated as follows: : \forall F\forall x\exists y\forall z(z\in y \iff \exists w(w\in x\land z = F(w))) , namely the second-order universal closure of the axiom schema of replacement.G. Uzquiano, "Models of Second-Order Zermelo Set Theory". Bulletin of Symbolic Logic, vol. 5, no. 3 (1999), pp.289--302.p. 289 Then every model of \mathrm^2 is isomorphic to a set V_\kappa in the von Neumann hierarchy, for some inaccessible cardinal \kappa., Theorem 1. Original presentation Zermelo originally considered a version of \mathrm^2 with urelements. Rather than using the modern satisfaction relation \vDash, he defines a "normal domain" to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-ordering Theorem
In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set ''X'' is ''well-ordered'' by a strict total order if every non-empty subset of ''X'' has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also ). Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem. One can conclude from the well-ordering theorem that every set is susceptible to transfinite induction, which is considered by mathematicians to be a powerful technique. One famous consequence of the theorem is the Banach–Tarski paradox. History Georg Cantor considered the well-ordering theorem to be a "fundamental principle of thought". However, it is considered difficult or even impossible to visualize a well-ordering of \mathbb, the set o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zermelo Ordinal
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like jersey numbers on a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Choice Function
Let ''X'' be a set of sets none of which are empty. Then a choice function (selector, selection) on ''X'' is a mathematical function ''f'' that is defined on ''X'' such that ''f'' is a mapping that assigns each element of ''X'' to one of its elements. An example Let ''X'' = . Then the function ''f'' defined by ''f''() = 7, ''f''() = 9 and ''f''() = 2 is a choice function on ''X''. History and importance Ernst Zermelo (1904) introduced choice functions as well as the axiom of choice (AC) and proved the well-ordering theorem, which states that every set can be well-ordered. AC states that every set of nonempty sets has a choice function. A weaker form of AC, the axiom of countable choice (ACω) states that every countable set of nonempty sets has a choice function. However, in the absence of either AC or ACω, some sets can still be shown to have a choice function. *If X is a finite set of nonempty sets, then one can construct a choice function for X by picking on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]