You Only Look Once
   HOME



picture info

You Only Look Once
You Only Look Once (YOLO) is a series of real-time object detection systems based on convolutional neural networks. First introduced by Joseph Redmon et al. in 2015, YOLO has undergone several iterations and improvements, becoming one of the most popular object detection frameworks. The name "You Only Look Once" refers to the fact that the algorithm requires only one forward propagation pass through the neural network to make predictions, unlike previous region proposal-based techniques like R-CNN that require thousands for a single image. Overview Compared to previous methods like R-CNN and OverFeat, instead of applying the model to an image at multiple locations and scales, YOLO applies a single neural network to the full image. This network divides the image into regions and predicts bounding boxes and probabilities for each region. These bounding boxes are weighted by the predicted probabilities. OverFeat OverFeat was an early influential model for simultaneous object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Python (programming Language)
Python is a high-level programming language, high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Python is type system#DYNAMIC, dynamically type-checked and garbage collection (computer science), garbage-collected. It supports multiple programming paradigms, including structured programming, structured (particularly procedural programming, procedural), object-oriented and functional programming. It is often described as a "batteries included" language due to its comprehensive standard library. Guido van Rossum began working on Python in the late 1980s as a successor to the ABC (programming language), ABC programming language, and he first released it in 1991 as Python 0.9.0. Python 2.0 was released in 2000. Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last release of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Object Detection
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including image retrieval and video surveillance. Uses It is widely used in computer vision tasks such as image annotation, vehicle counting, activity recognition, face detection, face recognition, video object co-segmentation. It is also used in tracking objects, for example tracking a ball during a football match, tracking movement of a cricket bat, or tracking a person in a video. Often, the test images are sampled from a different data distribution, making the object detection task significantly more difficult. To address the challenges caused by the domain gap between training and test ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolutional Neural Network
A convolutional neural network (CNN) is a type of feedforward neural network that learns features via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. Convolution-based networks are the de-facto standard in deep learning-based approaches to computer vision and image processing, and have only recently been replaced—in some cases—by newer deep learning architectures such as the transformer. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by the regularization that comes from using shared weights over fewer connections. For example, for ''each'' neuron in the fully-connected layer, 10,000 weights would be required for processing an image sized 100 × 100 pixels. However, applying cascaded ''convolution'' (or cross-correlation) kernels, only 25 weights for each convolutio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Vision
Computer vision tasks include methods for image sensor, acquiring, Image processing, processing, Image analysis, analyzing, and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the form of decisions. "Understanding" in this context signifies the transformation of visual images (the input to the retina) into descriptions of the world that make sense to thought processes and can elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory. The scientific discipline of computer vision is concerned with the theory behind artificial systems that extract information from images. Image data can take many forms, such as video sequences, views from multiple cameras, multi-dimensional data from a 3D scanning, 3D scanner, 3D point clouds ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Object Detection
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including image retrieval and video surveillance. Uses It is widely used in computer vision tasks such as image annotation, vehicle counting, activity recognition, face detection, face recognition, video object co-segmentation. It is also used in tracking objects, for example tracking a ball during a football match, tracking movement of a cricket bat, or tracking a person in a video. Often, the test images are sampled from a different data distribution, making the object detection task significantly more difficult. To address the challenges caused by the domain gap between training and test ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolutional Neural Network
A convolutional neural network (CNN) is a type of feedforward neural network that learns features via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. Convolution-based networks are the de-facto standard in deep learning-based approaches to computer vision and image processing, and have only recently been replaced—in some cases—by newer deep learning architectures such as the transformer. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by the regularization that comes from using shared weights over fewer connections. For example, for ''each'' neuron in the fully-connected layer, 10,000 weights would be required for processing an image sized 100 × 100 pixels. However, applying cascaded ''convolution'' (or cross-correlation) kernels, only 25 weights for each convolutio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Region Based Convolutional Neural Networks
Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. The original goal of R-CNN was to take an input image and produce a set of Minimum bounding box, bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or pedestrian) of the object. In general, R-CNN architectures perform selective search over feature maps outputted by a CNN. R-CNN has been extended to perform other computer vision tasks, such as: tracking objects from a drone-mounted camera, locating text in an image, and enabling object detection in Google Lens. Mask R-CNN is also one of seven tasks in the MLPerf Training Benchmark, which is a competition to speed up the training of neural networks. History The following covers some of the versions of R-CNN that have been developed. * November 2013: R-CNN. * April 2015: Fast R-CNN. * June 2015: Faster R-CNN. * March 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AlexNet
AlexNet is a convolutional neural network architecture developed for image classification tasks, notably achieving prominence through its performance in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). It classifies images into 1,000 distinct object categories and is regarded as the first widely recognized application of deep convolutional networks in large-scale visual recognition. Developed in 2012 by Alex Krizhevsky in collaboration with Ilya Sutskever and his Ph.D. advisor Geoffrey Hinton at the University of Toronto, the model contains 60 million parameters and 650,000 neurons. The original paper's primary result was that the depth of the model was essential for its high performance, which was computationally expensive, but made feasible due to the utilization of graphics processing units (GPUs) during training. The three formed team SuperVision and submitted AlexNet in the ImageNet Large Scale Visual Recognition Challenge on September 30, 2012. The network ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersection Over Union
The Jaccard index is a statistic used for gauging the Similarity measure, similarity and diversity index, diversity of Sample (statistics), sample sets. It is defined in general taking the ratio of two sizes (areas or volumes), the intersection size divided by the union size, also called intersection over union (IoU). It was developed by Grove Karl Gilbert in 1884 as his ratio of verification (v) and now is often called the critical success index in meteorology. It was later developed independently by Paul Jaccard, originally giving the French name (coefficient of community), and independently formulated again by Taffee Tadashi Tanimoto. Thus, it is also called Tanimoto index or Tanimoto coefficient in some fields. Overview The Jaccard index measures similarity between finite non-empty sample sets and is defined as the size of the intersection (set theory), intersection divided by the size of the Union (set theory), union of the sample sets: : J(A, B) = \frac = \frac. Note t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE