HOME





Western Digital WD16
The WD16 is a 16-bit microprocessor introduced by Western Digital in October 1976. It is based on the MCP-1600 chipset, a general-purpose design that was also used to implement the DEC LSI-11 low-end minicomputer and the Pascal MicroEngine processor. The three systems differed primarily in their microcode, giving each system a unique instruction set architecture (ISA). The WD16 implements an extension of the PDP-11 instruction set architecture but is not machine code compatible with the PDP-11. The instruction set and microcoding were created by Dick Wilcox and Rich Notari. The WD16 is an example of orthogonal CISC architecture. Most two-operand instructions can operate memory-to-memory with any addressing mode and some instructions can result in up to ten memory accesses. The WD16 is implemented in five 40-pin DIP packages. Maximum clock speed is 3.3 MHz. Its interface to memory is via a 16-bit multiplexed data/address bus. The WD16 is best known for its use in Alph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alpha Microsystems
Alpha Microsystems, Inc., often shortened to Alpha Micro, was an American computer company founded in 1977 in Costa Mesa, California, by John French, Dick Wilcox and Bob Hitchcock. During the dot-com bubble, dot-com boom, the company changed its name to AlphaServ, then NQL Inc., reflecting its pivot toward being a provider of Internet software. However, the company soon reverted to its original Alpha Microsystems name after the dot-com bubble burst. Products The first Alpha Micro computer was the S-100 bus, S-100 AM-100, based upon the WD16 microprocessor chipset from Western Digital. In April 1978, the two-board AM-100 was offered at $1,495 (). As of 1982, AM-100/L and the AM-1000 were based on the Motorola Motorola 68000, 68000 and succeeding processors, though Alpha Micro swapped several addressing lines to create byte-ordering compatibility with their earlier processor. Early peripherals included standard computer terminals (such models as Soroc, Hazeltine Corporation, H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sign Flag
In a computer processor the negative flag or sign flag is a single bit in a system status (flag) register used to indicate whether the result of the last mathematical operation produced a value in which the most significant bit (the left most bit) was set. In a two's complement interpretation of the result, the negative flag is set if the result was negative. For example, in an 8-bit signed number system, -37 will be represented as 1101 1011 in binary (the most significant bit, or sign bit, is 1), while +37 will be represented as 0010 0101 (the most significant bit is 0). The negative flag is set according to the result in the x86 series processors by the following instructions (referring to the Intel 80386 manual): * All arithmetic operations except multiplication and division; * compare instructions (equivalent to subtract instructions without storing the result); * Logical instructions – XOR, AND, OR; * TEST Test(s), testing, or TEST may refer to: * Test (assessment) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bank Switching
Bank switching is a technique used in computer design to increase the amount of usable memory beyond the amount directly addressable by the Processor (computing), processor instructions. It can be used to configure a system differently at different times; for example, a read-only memory, ROM required to booting, start a system from diskette could be switched out when no longer needed. In video game systems, bank switching allowed larger games to be developed for play on existing consoles. Bank switching originated in minicomputer systems. Many modern microcontrollers and microprocessors use bank switching to manage random-access memory, non-volatile memory, input-output devices and system management registers in small embedded systems. The technique was common in 8-bit microcomputer systems. Bank-switching may also be used to work around limitations in address bus width, where some hardware constraint prevents straightforward addition of more address lines, and to work around li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memory-mapped I/O
Memory-mapped I/O (MMIO) and port-mapped I/O (PMIO) are two complementary methods of performing input/output (I/O) between the central processing unit (CPU) and peripheral devices in a computer (often mediating access via chipset). An alternative approach is using dedicated I/O processors, commonly known as channels on mainframe computers, which execute their own instructions. Memory-mapped I/O uses the same address space to address both main memory and I/O devices. The memory and registers of the I/O devices are mapped to (associated with) address values, so a memory address may refer to either a portion of physical RAM or to memory and registers of the I/O device. Thus, the CPU instructions used to access the memory (e.g. ) can also be used for accessing devices. Each I/O device either monitors the CPU's address bus and responds to any CPU access of an address assigned to that device, connecting the system bus to the desired device's hardware register, or uses a dedi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kilobyte
The kilobyte is a multiple of the unit byte for Computer data storage, digital information. The International System of Units (SI) defines the prefix ''kilo-, kilo'' as a multiplication factor of 1000 (103); therefore, one kilobyte is 1000 bytes.International Standard IEC 80000-13 Quantities and Units – Part 13: Information science and technology, International Electrotechnical Commission (2008). The internationally recommended unit symbol for the kilobyte is kB. In some areas of information technology, particularly in reference to random-access memory capacity, ''kilobyte'' instead often refers to 1024 (210) bytes. This arises from the prevalence of sizes that are powers of two in modern digital memory architectures, coupled with the coincidence that 210 differs from 103 by less than 2.5%. The kibibyte is defined as 1024 bytes, avoiding the ambiguity issues of the ''kilobyte''.International Standard IEC 80000-13 Quantities and Units – Part 13: Information scien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Offset Binary
Offset binary, also referred to as excess-K, excess-''N'', excess-e, excess code or biased representation, is a method for signed number representation where a signed number n is represented by the bit pattern corresponding to the unsigned number n+K, K being the ''biasing value'' or ''offset''. There is no standard for offset binary, but most often the ''K'' for an ''n''-bit binary word is ''K'' = 2''n''−1 (for example, the offset for a four-digit binary number would be 23=8). This has the consequence that the minimal negative value is represented by all-zeros, the "zero" value is represented by a 1 in the most significant bit and zero in all other bits, and the maximal positive value is represented by all-ones (conveniently, this is the same as using two's complement but with the most significant bit inverted). It also has the consequence that in a logical comparison operation, one gets the same result as with a true form numerical comparison operation, whereas, in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floating-point Arithmetic
In computing, floating-point arithmetic (FP) is arithmetic on subsets of real numbers formed by a ''significand'' (a Sign (mathematics), signed sequence of a fixed number of digits in some Radix, base) multiplied by an integer power of that base. Numbers of this form are called floating-point numbers. For example, the number 2469/200 is a floating-point number in base ten with five digits: 2469/200 = 12.345 = \! \underbrace_\text \! \times \! \underbrace_\text\!\!\!\!\!\!\!\overbrace^ However, 7716/625 = 12.3456 is not a floating-point number in base ten with five digits—it needs six digits. The nearest floating-point number with only five digits is 12.346. And 1/3 = 0.3333… is not a floating-point number in base ten with any finite number of digits. In practice, most floating-point systems use Binary number, base two, though base ten (decimal floating point) is also common. Floating-point arithmetic operations, such as addition and division, approximate the correspond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Endianness
file:Gullivers_travels.jpg, ''Gulliver's Travels'' by Jonathan Swift, the novel from which the term was coined In computing, endianness is the order in which bytes within a word (data type), word of digital data are transmitted over a data communication medium or Memory_address, addressed (by rising addresses) in computer memory, counting only byte Bit_numbering#Bit significance and indexing, significance compared to earliness. Endianness is primarily expressed as big-endian (BE) or little-endian (LE), terms introduced by Danny Cohen (computer scientist), Danny Cohen into computer science for data ordering in an Internet Experiment Note published in 1980. Also published at The adjective ''endian'' has its origin in the writings of 18th century Anglo-Irish writer Jonathan Swift. In the 1726 novel ''Gulliver's Travels'', he portrays the conflict between sects of Lilliputians divided into those breaking the shell of a boiled egg from the big end or from the little end. By analogy, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Word (computer Architecture)
In computing, a word is any processor design's natural unit of data. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits in a word (the ''word size'', ''word width'', or ''word length'') is an important characteristic of any specific processor design or computer architecture. The size of a word is reflected in many aspects of a computer's structure and operation; the majority of the registers in a processor are usually word-sized and the largest datum that can be transferred to and from the working memory in a single operation is a word in many (not all) architectures. The largest possible address size, used to designate a location in memory, is typically a hardware word (here, "hardware word" means the full-sized natural word of the processor, as opposed to any other definition used). Documentation for older computers with fixed word size commonly states memory sizes in words rather than bytes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Byte
The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as the Internet Protocol () refer to an 8-bit byte as an octet. Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness. The size of the byte has historically been hardware-dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used. The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words of 12, 18, 24, 30, 36, 48, or 60 bits, corresponding t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Program Counter
The program counter (PC), commonly called the instruction pointer (IP) in Intel x86 and Itanium microprocessors, and sometimes called the instruction address register (IAR), the instruction counter, or just part of the instruction sequencer, is a processor register that indicates where a computer is in its program sequence. Usually, the PC is incremented after fetching an instruction, and holds the memory address of (" points to") the next instruction that would be executed. Processors usually fetch instructions sequentially from memory, but ''control transfer'' instructions change the sequence by placing a new value in the PC. These include branches (sometimes called jumps), subroutine calls, and returns. A transfer that is conditional on the truth of some assertion lets the computer follow a different sequence under different conditions. A branch provides that the next instruction is fetched from elsewhere in memory. A subroutine call not only branches but saves the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Processor Register
A processor register is a quickly accessible location available to a computer's processor. Registers usually consist of a small amount of fast storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900. Almost all computers, whether load/store architecture or not, load items of data from a larger memory into registers where they are used for arithmetic operations, bitwise operations, and other operations, and are manipulated or tested by machine instructions. Manipulated items are then often stored back to main memory, either by the same instruction or by a subsequent one. Modern processors use either static or dynamic random-access memory (RAM) as main memory, with the latter usually accessed via one or more cache levels. Processor registers are normal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]