HOME





Volterra Integral Equation
In mathematics, the Volterra integral equations are a special type of integral equations. They are divided into two groups referred to as the first and the second kind. A linear Volterra equation of the first kind is : f(t) = \int_a^t K(t,s)\,x(s)\,ds where ''f'' is a given function and ''x'' is an unknown function to be solved for. A linear Volterra equation of the second kind is : x(t) = f(t) + \int_a^t K(t,s)x(s)\,ds. In operator theory, and in Fredholm theory, the corresponding operators are called Volterra operators. A useful method to solve such equations, the Adomian decomposition method, is due to George Adomian. A linear Volterra integral equation is a convolution equation if : x(t) = f(t) + \int_^t K(t-s)x(s)\,ds. The function K in the integral is called the kernel. Such equations can be analyzed and solved by means of Laplace transform techniques. For a weakly singular kernel of the form K(t,s) = (t^2-s^2)^ with 0Defining x_ = x(s_), f_ = f(t_), and K_ = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Actuarial Science
Actuarial science is the discipline that applies mathematics, mathematical and statistics, statistical methods to Risk assessment, assess risk in insurance, pension, finance, investment and other industries and professions. Actuary, Actuaries are professionals trained in this discipline. In many countries, actuaries must demonstrate their competence by passing a series of rigorous professional examinations focused in fields such as probability and predictive analysis. Actuarial science includes a number of interrelated subjects, including mathematics, probability theory, statistics, finance, economics, financial accounting and computer science. Historically, actuarial science used deterministic models in the construction of tables and premiums. The science has gone through revolutionary changes since the 1980s due to the proliferation of high speed computers and the union of stochastic actuarial models with modern financial theory. Many universities have undergraduate and gradu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermann (publishing House)
Hermann or Herrmann may refer to: * Hermann (name), list of people with this name * Arminius, chieftain of the Germanic Cherusci tribe in the 1st century, known as Hermann in the German language * Éditions Hermann, French publisher * Hermann, Missouri, a town on the Missouri River in the United States ** Hermann AVA, Missouri wine region * The German SC1000 bomb of World War II was nicknamed the "Hermann" by the British, in reference to Hermann Göring * Herrmann Hall, the former Hotel Del Monte, at the Naval Postgraduate School, Monterey, California * Memorial Hermann Healthcare System, a large health system in Southeast Texas * The Herrmann Brain Dominance Instrument (HBDI), a system to measure and describe thinking preferences in people * Hermann station (other), stations of the name * Hermann (crater), a small lunar impact crater in the western Oceanus Procellarum * Hermann Huppen, a Belgian comic book artist * Hermann 19, an American sailboat design built by Ted Herm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paris
Paris () is the Capital city, capital and List of communes in France with over 20,000 inhabitants, largest city of France. With an estimated population of 2,048,472 residents in January 2025 in an area of more than , Paris is the List of cities in the European Union by population within city limits, fourth-most populous city in the European Union and the List of cities proper by population density, 30th most densely populated city in the world in 2022. Since the 17th century, Paris has been one of the world's major centres of finance, diplomacy, commerce, culture, Fashion capital, fashion, and gastronomy. Because of its leading role in the French art, arts and Science and technology in France, sciences and its early adoption of extensive street lighting, Paris became known as the City of Light in the 19th century. The City of Paris is the centre of the Île-de-France region, or Paris Region, with an official estimated population of 12,271,794 inhabitants in January 2023, or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integro-differential Equation
In mathematics, an integro-differential equation is an equation that involves both integrals and derivatives of a function (mathematics), function. General first order linear equations The general first-order, linear (only with respect to the term involving derivative) integro-differential equation is of the form : \fracu(x) + \int_^x f(t,u(t))\,dt = g(x,u(x)), \qquad u(x_0) = u_0, \qquad x_0 \ge 0. As is typical with differential equations, obtaining a closed-form solution can often be difficult. In the relatively few cases where a solution can be found, it is often by some kind of integral transform, where the problem is first transformed into an algebraic setting. In such situations, the solution of the problem may be derived by applying the inverse transform to the solution of this algebraic equation. Example Consider the following second-order problem, : u'(x) + 2u(x) + 5\int_^u(t)\,dt = \theta(x) \qquad \text \qquad u(0)=0, where : \theta(x) = \left\{ \begin{ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Integral Equation
In mathematical analysis, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,\ldots,x_n ; u(x_1,x_2,x_3,\ldots,x_n) ; I^1 (u), I^2(u), I^3(u), \ldots, I^m(u)) = 0 where I^i(u) is an integral operator acting on ''u.'' Hence, integral equations may be viewed as the analog to differential equations where instead of the equation involving derivatives, the equation contains integrals. A direct comparison can be seen with the mathematical form of the general integral equation above with the general form of a differential equation which may be expressed as follows:f(x_1,x_2,x_3,\ldots,x_n ; u(x_1,x_2,x_3,\ldots,x_n) ; D^1 (u), D^2(u), D^3(u), \ldots, D^m(u)) = 0where D^i(u) may be viewed as a differential operator of order ''i''. Due to this close connection between differential and integral equations, one can often convert between the two. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fredholm Integral Equation
In mathematics, the Fredholm integral equation is an integral equation whose solution gives rise to Fredholm theory, the study of Fredholm kernels and Fredholm operators. The integral equation was studied by Ivar Fredholm. A useful method to solve such equations, the Adomian decomposition method, is due to George Adomian. Equation of the first kind A Fredholm equation is an integral equation in which the term containing the kernel function (defined below) has constants as integration limits. A closely related form is the Volterra integral equation which has variable integral limits. An inhomogeneous Fredholm equation of the first kind is written as and the problem is, given the continuous kernel function K and the function g, to find the function f. An important case of these types of equation is the case when the kernel is a function only of the difference of its arguments, namely K(t,s)=K(t-s), and the limits of integration are ±∞, then the right hand side of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Survival Function
The survival function is a function that gives the probability that a patient, device, or other object of interest will survive past a certain time. The survival function is also known as the survivor function or reliability function. The term ''reliability function'' is common in engineering while the term ''survival function'' is used in a broader range of applications, including human mortality. The survival function is the complementary cumulative distribution function of the lifetime. Sometimes complementary cumulative distribution functions are called survival functions in general. Definition Let the lifetime T be a continuous random variable describing the time to failure. If T has cumulative distribution function F(t) and probability density function f(t) on the interval [0,\infty), then the ''survival function'' or ''reliability function'' is: S(t) = P(T > t) = 1-F(t) = 1 - \int_0^t f(u)\,du Examples of survival functions The graphs below show examples of hypot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisson Point Process
In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The process's name derives from the fact that the number of points in any given finite region follows a Poisson distribution. The process and the distribution are named after French mathematician Siméon Denis Poisson. The process itself was discovered independently and repeatedly in several settings, including experiments on radioactive decay, telephone call arrivals and actuarial science. This point process is used as a mathematical model for seemingly random processes in numerous disciplines including astronomy,G. J. Babu and E. D. Feigelson. Spatial point processes in astronomy. ''Journal of statistical planning and inference'', 50( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ruin Theory
In actuarial science and applied probability, ruin theory (sometimes risk theory or collective risk theory) uses mathematical models to describe an insurer's vulnerability to insolvency/ruin. In such models key quantities of interest are the probability of ruin, distribution of surplus immediately prior to ruin and deficit at time of ruin. Classical model The theoretical foundation of ruin theory, known as the Cramér–Lundberg model (or classical compound-Poisson risk model, classical risk process or Poisson risk process) was introduced in 1903 by the Swedish actuary Filip Lundberg. Lundberg's work was republished in the 1930s by Harald Cramér. The model describes an insurance company who experiences two opposing cash flows: incoming cash premiums and outgoing claims. Premiums arrive a constant rate ''c > 0'' from customers and claims arrive according to a Poisson process N_t with intensity \lambda and are independent and identically distributed non-negative random variables ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (: matrices) is a rectangle, rectangular array or table of numbers, symbol (formal), symbols, or expression (mathematics), expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a " matrix", or a matrix of dimension . Matrices are commonly used in linear algebra, where they represent linear maps. In geometry, matrices are widely used for specifying and representing geometric transformations (for example rotation (mathematics), rotations) and coordinate changes. In numerical analysis, many computational problems are solved by reducing them to a matrix computation, and this often involves computing with matrices of huge dimensions. Matrices are used in most areas of mathematics and scientific fields, either directly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]