Vector Lattice
In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice. Riesz spaces are named after Frigyes Riesz who first defined them in his 1928 paper ''Sur la décomposition des opérations fonctionelles linéaires''. Riesz spaces have wide-ranging applications. They are important in measure theory, in that important results are special cases of results for Riesz spaces. For example, the Radon–Nikodym theorem follows as a special case of the Freudenthal spectral theorem. Riesz spaces have also seen application in mathematical economics through the work of Greek-American economist and mathematician Charalambos D. Aliprantis. Definition Preliminaries If X is an ordered vector space (which by definition is a vector space over the reals) and if S is a subset of X then an element b \in X is an upper bound (resp. lower bound) of S if s \leq b (resp. s \geq b) for all s \in S. An eleme ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
Join Semilattice
Join may refer to: * Join (law), to include additional counts or additional defendants on an indictment *In mathematics: ** Join (mathematics), a least upper bound of sets orders in lattice theory ** Join (topology), an operation combining two topological spaces ** Join (category theory), an operation combining two categories ** Join (simplicial sets), an operation combining two simplicial sets ** Join (sigma algebra), a refinement of sigma algebras ** Join (algebraic geometry), a union of lines between two varieties *In computing: ** Join (relational algebra), a binary operation on tuples corresponding to the relation join of SQL *** Join (SQL), relational join, a binary operation on SQL and relational database tables *** join (Unix), a Unix command similar to relational join ** Join-calculus, a process calculus developed at INRIA for the design of distributed programming languages *** Join-pattern, generalization of Join-calculus *** Joins (concurrency library), a concurrent compu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Archimedean Order
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, as typically construed, states that given two positive numbers x and y, there is an integer n such that nx > y. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ ''On the Sphere and Cylinder''. The notion arose from the theory of magnitudes of ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields. An algebraic structure in which any two non-zero elements are ''comparable'', in the sens ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Archimedean Property
In abstract algebra and mathematical analysis, analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, Italy, Syracuse, is a property held by some algebraic structures, such as ordered or normed group (algebra), groups, and field (mathematics), fields. The property, as typically construed, states that given two positive numbers x and y, there is an integer n such that nx > y. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ ''On the Sphere and Cylinder''. The notion arose from the theory of magnitude (mathematics), magnitudes of ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's Hilbert's axioms, axioms for geometry, and the theories of linearly ordered group, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Order Complete
In mathematics, specifically in order theory and functional analysis, a subset A of an ordered vector space is said to be order complete in X if for every non-empty subset S of X that is order bounded in A (meaning contained in an interval, which is a set of the form [a, b] := \, for some a, b \in A), the supremum \sup S and the infimum \inf S both exist and are elements of A. An ordered vector space is called order complete, Dedekind complete, a complete vector lattice, or a complete Riesz space, if it is order complete as a subset of itself, in which case it is necessarily a vector lattice. An ordered vector space is said to be countably order complete if each countable subset that is bounded above has a supremum. Being an order complete vector space is an important property that is used frequently in the theory of topological vector lattices. Examples The Order dual (functional analysis), order dual of a vector lattice is an order complete vector lattice under its canonica ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Algebraic Dual
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ahn 1927 ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Order Bound Dual
In mathematics, specifically in order theory and functional analysis, the order bound dual of an ordered vector space X is the set of all linear functionals on X that map order intervals, which are sets of the form , b:= \, to bounded sets. The order bound dual of X is denoted by X^. This space plays an important role in the theory of ordered topological vector spaces. Canonical ordering An element g of the order bound dual of X is called positive if x \geq 0 implies \operatorname(f(x)) \geq 0. The positive elements of the order bound dual form a cone that induces an ordering on X^ called the . If X is an ordered vector space whose positive cone C is generating (meaning X = C - C) then the order bound dual with the canonical ordering is an ordered vector space. Properties The order bound dual of an ordered vector spaces contains its order dual. If the positive cone of an ordered vector space X is generating and if for all positive x and x we have , x+ , y= , x + y T ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Linear Functional
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear mapIn some texts the roles are reversed and vectors are defined as linear maps from covectors to scalars from a vector space to its field of scalars (often, the real numbers or the complex numbers). If is a vector space over a field , the set of all linear functionals from to is itself a vector space over with addition and scalar multiplication defined pointwise. This space is called the dual space of , or sometimes the algebraic dual space, when a topological dual space is also considered. It is often denoted , p. 19, §3.1 or, when the field is understood, V^*; other notations are also used, such as V', V^ or V^. When vectors are represented by column vectors (as is common when a basis is fixed), then linear functionals are represented as row vectors, and their values on specific vectors are given by matrix products (with the row vector on the left). Examples T ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Absorbing Set
In functional analysis and related areas of mathematics an absorbing set in a vector space is a set S which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset. Definition Notation for scalars Suppose that X is a vector space over the field \mathbb of real numbers \R or complex numbers \Complex, and for any -\infty \leq r \leq \infty, let B_r = \ \quad \text \quad B_ = \ denote the ''open ball'' (respectively, the ''closed ball'') of radius r in \mathbb centered at 0. Define the product of a set K \subseteq \mathbb of scalars with a set A of vectors as K A = \, and define the product of K \subseteq \mathbb with a single vector x as K x = \. Preliminaries Balanced core and balanced hull A subset S of X is said to be '' '' if a s \in S for all s \in S and all scalars a satisfying , a, \leq ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Order Unit
An order unit is an element of an ordered vector space which can be used to bound all elements from above. In this way (as seen in the first example below) the order unit generalizes the unit element in the reals. According to H. H. Schaefer, "most of the ordered vector spaces occurring in analysis do not have order units." Definition For the ordering cone K \subseteq X in the vector space X, the element e \in K is an order unit (more precisely a K-order unit) if for every x \in X there exists a \lambda_x > 0 such that \lambda_x e - x \in K (that is, x \leq_K \lambda_x e). Equivalent definition The order units of an ordering cone K \subseteq X are those elements in the algebraic interior of K; that is, given by \operatorname(K). Examples Let X = \R be the real numbers and K = \R_+ = \, then the unit element 1 is an . Let X = \R^n and K = \R^n_+ = \left\, then the unit element \vec = (1, \ldots, 1) is an . Each interior point of the positive cone of an ordered topolog ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Balanced Set
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field \mathbb with an absolute value function , \cdot , ) is a set S such that a S \subseteq S for all scalars a satisfying , a, \leq 1. The balanced hull or balanced envelope of a set S is the smallest balanced set containing S. The balanced core of a set S is the largest balanced set contained in S. Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neighborhood of the origin and every convex neighborhood of the origin contains a balanced convex neighborhood of the origin (even if the TVS is not locally convex). This neighborhood can also be chosen to be an open set or, alternatively, a closed set. Definition Let X be a vector space over the field \mathbb of real or complex numbers. Notation If S is a set, a is a scalar, and B \subseteq \mathbb then let a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Convex Set
In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary (topology), boundary of a convex set in the plane is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval (mathematics), interval with the property that its epigraph (mathematics), epigraph (the set of points on or above the graph of a function, graph of the function) is a convex set. Convex minimization is a subfield of mathematical optimization, optimization that studies the problem of minimizing convex functions over convex sets. The branch of mathematics devoted to the study of properties of convex sets and convex f ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |