Toroidal Embedding
In algebraic geometry, a toroidal embedding is an open embedding of algebraic varieties that locally looks like the embedding of the open torus into a toric variety. The notion was introduced by Mumford to prove the existence of semistable reductions of algebraic varieties over one-dimensional bases. Definition Let ''X'' be a normal variety over an algebraically closed field \bar and U \subset X a smooth open subset. Then U \hookrightarrow X is called a toroidal embedding if for every closed point ''x'' of ''X'', there is an isomorphism of local \bar-algebras: :\widehat_ \simeq \widehat_ for some affine toric variety X_ with a torus ''T'' and a point ''t'' such that the above isomorphism takes the ideal of X - U to that of X_ - T. Let ''X'' be a normal variety over a field ''k''. An open embedding U\hookrightarrow X is said to a toroidal embedding if U_\hookrightarrow X_ is a toroidal embedding. Examples Tits' buildings See also *tropical compactification In algebrai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Toric Variety
In algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be normal. Toric varieties form an important and rich class of examples in algebraic geometry, which often provide a testing ground for theorems. The geometry of a toric variety is fully determined by the combinatorics of its associated fan, which often makes computations far more tractable. For a certain special, but still quite general class of toric varieties, this information is also encoded in a polytope, which creates a powerful connection of the subject with convex geometry. Familiar examples of toric varieties are affine space, projective spaces, products of projective spaces and bundles over projective space. Toric varieties from tori The original motivation to study toric varieties was to study torus embeddings. Given the algebrai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Variety
In algebraic geometry, an algebraic variety or scheme ''X'' is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety ''X'' (understood to be irreducible) is normal if and only if the ring ''O''(''X'') of regular functions on ''X'' is an integrally closed domain. A variety ''X'' over a field is normal if and only if every finite birational morphism from any variety ''Y'' to ''X'' is an isomorphism. Normal varieties were introduced by . Geometric and algebraic interpretations of normality A morphism of varieties is finite if the inverse image of every point is finite and the morphism is proper. A morphism of varieties is birational if it restricts to an isomorphism between dense open subsets. So, for example, the cuspidal cubic curve ''X'' in the affine plane ''A''2 defined by ''x''2 = ''y''3 is not normal, because there is a finite birational morphism ''A''1 → ''X'' (namely, ''t'' maps to (''t''3, ''t''2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tropical Compactification
In algebraic geometry, a tropical compactification is a compactification ( projective completion) of a subvariety of an algebraic torus, introduced by Jenia Tevelev. Given an algebraic torus and a connected closed subvariety of that torus, a compactification of the subvariety is defined as a closure of it in a toric variety of the original torus. The concept of a tropical compatification arises when trying to make compactifications as "nice" as possible. For a torus T, a toric variety \mathbb, the compatification \bar is tropical when the map :\Phi: T \times \bar \to \mathbb,\ (t,x) \to tx is faithfully flat and \bar is proper. See also *Tropical geometry *GIT quotient * Chow quotient * Toroidal embedding References * Compactification Compactification may refer to: * Compactification (mathematics), making a topological space compact * Compactification (physics), the "curling up" of extra dimensions in string theory See also * Compaction (other) {{disambigu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationall ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |