Three-twist Knot
In knot theory, the three-twist knot is the twist knot with three-half twists. It is listed as the 52 knot in the Alexander-Briggs notation, and is one of two knots with crossing number five, the other being the cinquefoil knot. Properties The three-twist knot is a prime knot, and it is invertible but not amphichiral. Its Alexander polynomial is :\Delta(t) = 2t-3+2t^, \, its Conway polynomial is :\nabla(z) = 2z^2+1, \, and its Jones polynomial is :V(q) = q^ - q^ + 2q^ - q^ + q^ - q^. \, Because the Alexander polynomial is not monic, the three-twist knot is not fibered. The three-twist knot is a hyperbolic knot, with its complement having a volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ... of approximately 2.82812. If the fibre of the knot in the initial ima ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Knot Theory
In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, \mathbb^3 (in topology, a circle is not bound to the classical geometric concept, but to all of its homeomorphisms). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of describing a knot is a planar d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Twist Knot
In knot theory, a branch of mathematics, a twist knot is a knot obtained by repeatedly twisting a closed loop and then linking the ends together. (That is, a twist knot is any Whitehead double of an unknot.) The twist knots are an infinite family of knots, and are considered the simplest type of knots after the torus knots. Construction A twist knot is obtained by linking together the two ends of a twisted loop. Any number of half-twists may be introduced into the loop before linking, resulting in an infinite family of possibilities. The following figures show the first few twist knots: Image:One-Twist Trefoil.png, One half-twist ( trefoil knot, 31) Image:Blue Figure-Eight Knot.png, Two half-twists ( figure-eight knot, 41) Image:Blue Three-Twist Knot.png, Three half-twists ( 52 knot) Image:Blue Stevedore Knot.png, Four half-twists (stevedore knot, 61) Image:Blue 7_2 Knot.png, Five half-twists (72 knot) Image:Blue 8_1 Knot.png, Six half-twists (81 knot) Properties ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander-Briggs Notation
In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, \mathbb^3 (in topology, a circle is not bound to the classical geometric concept, but to all of its homeomorphisms). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of describing a knot is a planar di ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Crossing Number (knot Theory)
In the mathematical area of knot theory, the crossing number of a knot is the smallest number of crossings of any diagram of the knot. It is a knot invariant. Examples By way of example, the unknot has crossing number zero, the trefoil knot three and the figure-eight knot four. There are no other knots with a crossing number this low, and just two knots have crossing number five, but the number of knots with a particular crossing number increases rapidly as the crossing number increases. Tabulation Tables of prime knots are traditionally indexed by crossing number, with a subscript to indicate which particular knot out of those with this many crossings is meant (this sub-ordering is not based on anything in particular, except that torus knots then twist knots are listed first). The listing goes 31 (the trefoil knot), 41 (the figure-eight knot), 51, 52, 61, etc. This order has not changed significantly since P. G. Tait published a tabulation of knots in 1877. Additivity Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cinquefoil Knot
In knot theory, the cinquefoil knot, also known as Solomon's seal knot or the pentafoil knot, is one of two knots with crossing number five, the other being the three-twist knot. It is listed as the 51 knot in the Alexander-Briggs notation, and can also be described as the (5,2)- torus knot. The cinquefoil is the closed version of the double overhand knot. Properties The cinquefoil is a prime knot. Its writhe is 5, and it is invertible but not amphichiral. Its Alexander polynomial is :\Delta(t) = t^2 - t + 1 - t^ + t^, its Conway polynomial is :\nabla(z) = z^4 + 3z^2 + 1, and its Jones polynomial is :V(q) = q^ + q^ - q^ + q^ - q^. These are the same as the Alexander, Conway, and Jones polynomials of the knot 10132. However, the Kauffman polynomial can be used to distinguish between these two knots. History The name “cinquefoil” comes from the five-petaled flowers of plants in the genus '' Potentilla''. See also * Pentagram * Trefoil knot * 7₁ knot In kno ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Knot
In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a non- trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be composite knots or composite links. It can be a nontrivial problem to determine whether a given knot is prime or not. A family of examples of prime knots are the torus knots. These are formed by wrapping a circle around a torus ''p'' times in one direction and ''q'' times in the other, where ''p'' and ''q'' are coprime integers. Knots are characterized by their crossing numbers. The simplest prime knot is the trefoil with three crossings. The trefoil is actually a (2, 3)-torus knot. The figure-eight knot, with four crossings, is the simplest non-torus knot. For any positive integer ''n'', there are a finite number of prime knots with ''n'' crossings. The first few values are given in the following table. : Enantiomorphs are co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Invertible Knot
In mathematics, especially in the area of topology known as knot theory, an invertible knot is a knot that can be continuously deformed to itself, but with its orientation reversed. A non-invertible knot is any knot which does not have this property. The invertibility of a knot is a knot invariant. An invertible link is the link equivalent of an invertible knot. There are only five knot symmetry types, indicated by chirality and invertibility: fully chiral, reversible, positively amphichiral noninvertible, negatively amphichiral noninvertible, and fully amphichiral invertible.. Background It has long been known that most of the simple knots, such as the trefoil knot and the figure-eight knot are invertible. In 1962 Ralph Fox conjectured that some knots were non-invertible, but it was not proved that non-invertible knots exist until Hale Trotter discovered an infinite family of pretzel knots that were non-invertible in 1963.. It is now known almost all In mathematics, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Amphichiral Knot
Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from its mirror image; that is, it cannot be superimposed onto it. Conversely, a mirror image of an ''achiral'' object, such as a sphere, cannot be distinguished from the object. A chiral object and its mirror image are called ''enantiomorphs'' (Greek, "opposite forms") or, when referring to molecules, '' enantiomers''. A non-chiral object is called ''achiral'' (sometimes also ''amphichiral'') and can be superposed on its mirror image. The term was first used by Lord Kelvin in 1893 in the second Robert Boyle Lecture at the Oxford University Junior Scientific Club which was published in 1894: Human hands are perhaps the most recognized example of chirality. The left hand is a non-superimposable mirror image of the right hand; no matter how t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander Polynomial
In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial. Definition Let ''K'' be a knot in the 3-sphere. Let ''X'' be the infinite cyclic cover of the knot complement of ''K''. This covering can be obtained by cutting the knot complement along a Seifert surface of ''K'' and gluing together infinitely many copies of the resulting manifold with boundary in a cyclic manner. There is a covering transformation ''t'' acting on ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jones Polynomial
In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable t^ with integer coefficients. Definition by the bracket Suppose we have an oriented link L, given as a knot diagram. We will define the Jones polynomial, V(L), using Louis Kauffman's bracket polynomial, which we denote by \langle~\rangle. Here the bracket polynomial is a Laurent polynomial in the variable A with integer coefficients. First, we define the auxiliary polynomial (also known as the normalized bracket polynomial) :X(L) = (-A^3)^\langle L \rangle, where w(L) denotes the writhe of L in its given diagram. The writhe of a diagram is the number of positive crossings (L_ in the figure below) minus the number of negative crossings (L_). The writhe is not a knot invariant. X(L) is a knot invariant since ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monic Polynomial
In algebra, a monic polynomial is a single-variable polynomial (that is, a univariate polynomial) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. Therefore, a monic polynomial has the form: :x^n+c_x^+\cdots+c_2x^2+c_1x+c_0 Univariate polynomials If a polynomial has only one indeterminate ( univariate polynomial), then the terms are usually written either from highest degree to lowest degree ("descending powers") or from lowest degree to highest degree ("ascending powers"). A univariate polynomial in ''x'' of degree ''n'' then takes the general form displayed above, where : ''c''''n'' ≠ 0, ''c''''n''−1, ..., ''c''2, ''c''1 and ''c''0 are constants, the coefficients of the polynomial. Here the term ''c''''n''''x''''n'' is called the ''leading term'', and its coefficient ''c''''n'' the ''leading coefficient''; if the leading coefficient , the univariate polynomial is called monic. Properties Multiplicatively closed The se ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fibered Knot
In knot theory, a branch of mathematics, a knot or link K in the 3-dimensional sphere S^3 is called fibered or fibred (sometimes Neuwirth knot in older texts, after Lee Neuwirth) if there is a 1-parameter family F_t of Seifert surfaces for K, where the parameter t runs through the points of the unit circle S^1, such that if s is not equal to t then the intersection of F_s and F_t is exactly K. Examples Knots that are fibered For example: * The unknot, trefoil knot, and figure-eight knot are fibered knots. * The Hopf link is a fibered link. Knots that are not fibered The Alexander polynomial of a fibered knot is monic, i.e. the coefficients of the highest and lowest powers of ''t'' are plus or minus 1. Examples of knots with nonmonic Alexander polynomials abound, for example the twist knots have Alexander polynomials qt-(2q+1)+qt^, where ''q'' is the number of half-twists. In particular the stevedore knot is not fibered. Related constructions Fibered knots and links ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |