HOME



picture info

Supercontinent Cycle
The supercontinent cycle is the quasi-periodic aggregation and dispersal of Earth's continental crust. There are varying opinions as to whether the amount of continental crust is increasing, decreasing, or staying about the same, but it is agreed that the Earth's crust is constantly being reconfigured. One complete supercontinent cycle is said to take 300 to 500 million years. Continental collision makes fewer and larger continents while rifting makes more and smaller continents. Theory The most recent supercontinent, Pangaea, formed about 300 million years ago (0.3 Ga), during the Paleozoic era. There are two different views on the history of earlier supercontinents. Series The first theory proposes a series of supercontinents: starting with Vaalbara (3.6 to 2.8 Ga); Ur (c. 3 Ga); Kenorland (2.7 to 2.1 Ga); Columbia (1.8 to 1.5 Ga); Rodinia (1.25 Ga to 750 Ma); and Pannotia ( 600 Ma), whose dispersal produced the continents ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pangaea Continents
Pangaea or Pangea ( ) was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous period approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. Pangaea was C-shaped, with the bulk of its mass stretching between Earth's northern and southern polar regions and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans. Pangaea is the most recent supercontinent to have existed and was the first to be reconstructed by geologists. Origin of the concept The name "Pangaea" is derived from Ancient Greek ''pan'' (, "all, entire, whole") and ''Gaia'' or Gaea (, " Mother Earth, land"). The first to suggest that the continents were once joined and later separated may have been Abraham Ortelius in 1596. The concept that the conti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inclusion (mineral)
In mineralogy, an inclusion is any material trapped inside a mineral during its formation. In gemology, it is an object enclosed within a gemstone or reaching its surface from the interior. According to James Hutton's law of inclusions, fragments included in a host rock are older than the host rock itself. Mineralogy Inclusions are usually rock (geology), rocks or other minerals, less often water, gas or petroleum. Liquid and vapor create fluid inclusions. In amber, insects and plants are common inclusions. The analysis of atmospheric gas Bubble (physics), bubbles as inclusions in ice cores is an important tool in the study of climate change (general concept), climate change. A xenolith is a preexisting rock which has been picked up by a lava flow. Melt inclusions form when bits of melt become trapped inside crystals as they form in the melt. Gemology Inclusions are one of the most important factors when it comes to gem valuation. They diminish the diamond clarity, clarity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paleomagnetism
Paleomagnetism (occasionally palaeomagnetism) is the study of prehistoric Earth's magnetic fields recorded in rocks, sediment, or archeological materials. Geophysicists who specialize in paleomagnetism are called ''paleomagnetists.'' Certain magnetic minerals in rock (geology), rocks can record the direction and intensity of Earth's magnetic field at the time they formed. This record provides information on the past behavior of the geomagnetic field and the past location of Plate tectonics, tectonic plates. The record of geomagnetic reversals preserved in Volcanic rock, volcanic and sedimentary rock sequences (magnetostratigraphy) provides a time-scale that is used as a geochronology, geochronologic tool. Evidence from paleomagnetism led to the revival of the continental drift hypothesis and its transformation into the modern theory of plate tectonics. Apparent polar wander paths provided the first clear geophysical evidence for continental drift, while marine magnetic anomaly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oceanic Basin
In hydrology, an oceanic basin (or ocean basin) is anywhere on Earth that is covered by seawater. Geologically, most of the ocean basins are large Structural basin, geologic basins that are below sea level. Most commonly the ocean is divided into basins following the continents distribution: the Atlantic Ocean, North and South Atlantic (together approximately 75 million km2/ 29 million mi2), Pacific Ocean, North and South Pacific (together approximately 155 million km2/ 59 million mi2), Indian Ocean (68 million km2/ 26 million mi2) and Arctic Ocean (14 million km2/ 5.4 million mi2). Also recognized is the Southern Ocean (20 million km2/ 7 million mi2). All ocean basins collectively cover 71% of the Earth's surface, and together they contain almost 97% of all water on the planet. They have an average depth of almost 4 km (about 2.5 miles). Definitions of boundaries Boundaries based on continents ''"Limits of Oceans and Seas"'',International Hydrographic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John Tuzo Wilson
John Tuzo Wilson (October 24, 1908 – April 15, 1993) was a Canadian geophysicist and geologist who achieved worldwide acclaim for his contributions to the theory of plate tectonics. He added the concept of ''hot spots'', a volcanic region hotter than the surrounding mantle (as in the Hawaii hotspot). He also conceived of the ''transform fault'', a major plate boundary where two plates move past each other horizontally (''e.g.,'' the San Andreas Fault). His name was given to two young Canadian submarine volcanoes called the Tuzo Wilson Seamounts. The Wilson cycle of seabed expansion and contraction (associated with the Supercontinent cycle) bears his name. One of the two large low-shear-velocity provinces was given the name Tuzo after him, the other being named Jason after W. Jason Morgan, who furthered Wilson's work into plume theory. Early life and education Wilson was born in Ottawa on October 24, 1908, the son of John Armistead Wilson CBE, and his wife, Henriet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wilson Cycle
The Wilson Cycle is a model that describes the opening and closing of ocean basins and the subduction and divergence of tectonic plates during the assembly and disassembly of supercontinents. A classic example of the Wilson Cycle is the opening and closing of the Atlantic Ocean. It has been suggested that Wilson cycles on Earth started about 3 Ga in the Archean Eon. The Wilson Cycle model was a key development in the theory of plate tectonics during the Plate Tectonics Revolution. History The model is named after John Tuzo Wilson in recognition of his iconic observation that the present-day Atlantic Ocean appears along a former suture zone and his development in a classic 1968 paper of what was later named the "Wilson cycle" in 1975 by Kevin C. A. Burke, a colleague and friend of Wilson.Wilson, R. W.; Houseman, G. A.; Buiter, S. J. H.; McCaffrey, K. J. W.; Doré, A. G. (2019). "Fifty years of the Wilson Cycle concept in plate tectonics: an overview". Geological Society, Lon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eclogite
Eclogite () is a metamorphic rock containing garnet ( almandine- pyrope) hosted in a matrix of sodium-rich pyroxene ( omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite, amphibole, phengite, paragonite, zoisite, dolomite, corundum and, rarely, diamond. The chemistry of primary and accessory minerals is used to classify three types of eclogite (A, B, and C). The broad range of eclogitic compositions has led to a longstanding debate on the origin of eclogite xenoliths as subducted, altered oceanic crust. The name ''eclogite'' is derived from the Ancient Greek word for 'choice' (, ), meaning 'chosen rock' on account of its perceived beauty. It was first named by René Just Haüy in 1822 in the second edition of his work ''Traité de minéralogie''. Origins Eclogites typically result from high to ultrahigh pressure metamorphism of mafic rock at low thermal gradients of < as it is subducted to the lower crust to

picture info

Continental Collision
In geology, continental collision is a phenomenon of plate tectonics that occurs at Convergent boundary, convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produced, and two continents sutured together. Continental collision is only known to occur on Earth. Continental collision is not an instantaneous event, but may take several tens of millions of years before the Geologic fault, faulting and Fold (geology), folding caused by collisions stops. Geology of the Himalaya, The collision between Indian plate, India and Eurasian plate, Asia has been going on for about 50 million years already and shows no signs of abating. Collision between East and West Gondwana to form the East African Orogeny, East African Orogen took about 100 million years from beginning (610 Ma) to end (510 Ma). The collision between Gondwana and Laurasia to form Pangea occurred in a relati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subduction
Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at the convergent boundaries between tectonic plates. Where one tectonic plate converges with a second plate, the heavier plate dives beneath the other and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year. Subduction is possible because the cold and rigid oceanic lithosphere is slightly denser than the underlying asthenosphere, the hot, ductile layer in the upper mantle. Once initiated, stable subduction is driven mostly by the negative buoyancy of the dense subducting lithosphere. The down-going slab sinks into the mantle largely under its own ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Earth's Crust
Earth's crust is its thick outer shell of rock, referring to less than one percent of the planet's radius and volume. It is the top component of the lithosphere, a solidified division of Earth's layers that includes the crust and the upper part of the mantle. The lithosphere is broken into tectonic plates whose motion allows heat to escape the interior of Earth into space. The crust lies on top of the mantle, a configuration that is stable because the upper mantle is made of peridotite and is therefore significantly denser than the crust. The boundary between the crust and mantle is conventionally placed at the Mohorovičić discontinuity, a boundary defined by a contrast in seismic velocity. The temperature of the crust increases with depth, reaching values typically in the range from about at the boundary with the underlying mantle. The temperature increases by as much as for every kilometer locally in the upper part of the crust. Composition File:Elementa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eclogitization
Eclogitization is the tectonic process in which the high-pressure, metamorphic facies, eclogite (a very dense rock), is formed. This leads to an increase in the density of regions of Earth's crust, which leads to changes in plate motion at convergent boundaries (where rock sinks beneath other rock). Relationship to slab pull There is the argument that collision between two continents should slow down because of continental buoyancy, and that for convergence to continue, it should do so at a new subduction zone where oceanic crust can be consumed. Certain areas such as the Alps, Zagros Mountains, Zagros, and Himalayas (where continental collisions have continued for tens of millions of years, in the middle of land, creating mountain ranges) contradict this argument, and have led geologists to propose a ''continental undertow'' that continues subduction. This ''continental undertow'' is explained by the slab pull concept. Slab pull is the concept that plate motion is driven by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]