Square Tiling Honeycomb
In the geometry of Hyperbolic space, hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called ''paracompact'' because it has infinite Cell (geometry), cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol , it has three square tilings, , around each edge, and six square tilings around each vertex, in a cube, cubic vertex figure.Coxeter ''The Beauty of Geometry'', 1999, Chapter 10, Table III Rectified order-4 square tiling It is also seen as a rectified order-4 square tiling honeycomb, r: Symmetry The square tiling honeycomb has three reflective symmetry constructions: as a regular honeycomb, a half symmetry construction ↔ , and lastly a construction with three types (colors) of checkered square tilings ↔ . It also contains an index 6 subgroup [4,4,3*] ↔ [41,1,1], and a radial subgroup [4,(4,3)*] of index 48, with a right dihedral angle, dihedral-angled ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
H3 443 FC Boundary
H3, H03 or H-3 may refer to: Entertainment * ''H3'' (film), a 2001 film about the 1981 Irish hunger strike * ''H3 – Halloween Horror Hostel'', a 2008 German horror-parody television film * ''Happy Hustle High'', a manga series by Rie Takada, originally titled "H3 School!" * h3h3Productions, styled " 3, a satirical YouTube channel Science * Triatomic hydrogen (H3), an unstable molecule * Trihydrogen cation (), one of the most abundant ions in the universe * Tritium (3H), or hydrogen-3, an isotope of hydrogen * ATC code H03 ''Thyroid therapy'', a subgroup of the Anatomical Therapeutic Chemical Classification System * British NVC community H3, a heath community of the British National Vegetation Classification system * Histamine H3 receptor, a human gene * Histone H3, a component of DNA higher structure in eukaryotic cells * Hekla 3 eruption, a huge volcanic eruption around 1000 BC Computing * HTTP/3, the third major version of the Hypertext Transfer Protocol * Socket ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamental Domain
Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral. The images of a chosen fundamental domain under the group action then tile the space. One general construction of fundamental domains uses Voronoi cells. Hints at a general definition Given an action of a group ''G'' on a topological space ''X'' by homeomorphisms, a fundamental domain for this action is a set ''D'' of representatives for the orbits. It is usually required to be a reasonably nice set topologically, in one of several ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Octahedral
In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of irregular octahedra also exist, including both convex set, convex and non-convex shapes. Combinatorially equivalent to the regular octahedron The following polyhedra are combinatorially equivalent to the regular octahedron. They all have six vertices, eight triangular faces, and twelve edges that correspond one-for-one with the features of it: * Triangular antiprisms: Two faces are equilateral, lie on parallel planes, and have a common axis of symmetry. The other six triangles are isosceles. The regular octahedron is a special case in which the six lateral triangles are also equilateral. * Tetragonal bipyramids, in which at least one of the equatorial quadrilaterals lies on a plane. The regular octahedron is a special case in which all thr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
H3 444 Boundary 0100
H3, H03 or H-3 may refer to: Entertainment * ''H3'' (film), a 2001 film about the 1981 Irish hunger strike * ''H3 – Halloween Horror Hostel'', a 2008 German horror-parody television film * ''Happy Hustle High'', a manga series by Rie Takada, originally titled "H3 School!" * h3h3Productions, styled " 3, a satirical YouTube channel Science * Triatomic hydrogen (H3), an unstable molecule * Trihydrogen cation (), one of the most abundant ions in the universe * Tritium (3H), or hydrogen-3, an isotope of hydrogen * ATC code H03 ''Thyroid therapy'', a subgroup of the Anatomical Therapeutic Chemical Classification System * British NVC community H3, a heath community of the British National Vegetation Classification system * Histamine H3 receptor, a human gene * Histone H3, a component of DNA higher structure in eukaryotic cells * Hekla 3 eruption, a huge volcanic eruption around 1000 BC Computing * HTTP/3, the third major version of the Hypertext Transfer Protocol * Socket ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order-4 Square Tiling Honeycomb
In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is ''paracompact'' because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol , it has four square tilings around each edge, and infinite square tilings around each vertex in a square tiling vertex figure.Coxeter ''The Beauty of Geometry'', 1999, Chapter 10, Table III Symmetry The order-4 square tiling honeycomb has many reflective symmetry constructions: as a regular honeycomb, ↔ with alternating types (colors) of square tilings, and with 3 types (colors) of square tilings in a ratio of 2:1:1. Two more half symmetry constructions with pyramidal domains have ,4,1+,4symmetry: ↔ , and ↔ . There are two high-index subgroups, both index 8: ,4,4*↔ 4,4,4,4,1+) with a pyramidal fundamental domain: (4,∞,4)),((4,∞,4))or ; and ,4*,4 with 4 orthogonal sets of ultra-parallel mirrors ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex Figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines across the connected faces, joining adjacent points around the face. When done, these lines form a complete circuit, i.e. a polygon, around the vertex. This polygon is the vertex figure. More precise formal definitions can vary quite widely, according to circumstance. For example Coxeter (e.g. 1948, 1954) varies his definition as convenient for the current area of discussion. Most of the following definitions of a vertex figure apply equally well to infinite tessellation, tilings or, by extension, to Honeycomb (geometry), space-filling tessellation with polytope Cell (geometry), cells and other higher-dimensional polytopes. As a flat slice Make a slice through the corner of the polyhedron, cutting through all the edges conn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane consisting of four squares around every vertex. John Horton Conway called it a quadrille. Structure and properties The square tiling has a structure consisting of one type of congruent prototile, the square, sharing two vertices with other identical ones. This is an example of monohedral tiling. Each vertex at the tiling is surrounded by four squares, which denotes in a vertex configuration as 4.4.4.4 or 4^4 . The vertices of a square can be considered as the lattice, so the square tiling can be formed through the square lattice. This tiling is commonly familiar with the flooring and game boards. It is self-dual, meaning the center of each square connects to another of the adjacent tile, forming square tiling itself. The square tiling acts transitively on the ''flags'' of the tiling. In this case, the flag consists of a mutually incident vertex, edge, and tile ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal Point
In hyperbolic geometry, an ideal point, omega point or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line ''l'' and a point ''P'' not on ''l'', right- and left-limiting parallels to ''l'' through ''P'' converge to ''l'' at ''ideal points''. Unlike the projective case, ideal points form a boundary, not a submanifold. So, these lines do not intersect at an ideal point and such points, although well-defined, do not belong to the hyperbolic space itself. The ideal points together form the Cayley absolute or boundary of a hyperbolic geometry. For instance, the unit circle forms the Cayley absolute of the Poincaré disk model and the Klein disk model. The real line forms the Cayley absolute of the Poincaré half-plane model. Pasch's axiom and the exterior angle theorem still hold for an omega triangle, defined by two points in hyperbolic space and an omega point. Properties * The hyperbolic distance between an ideal point and any other ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Horosphere
In hyperbolic geometry, a horosphere (or parasphere) is a specific hypersurface in hyperbolic ''n''-space. It is the boundary of a horoball, the limit of a sequence of increasing balls sharing (on one side) a tangent hyperplane and its point of tangency. For ''n'' = 2 a horosphere is called a horocycle. A horosphere can also be described as the limit of the hyperspheres that share a tangent hyperplane at a given point, as their radii go towards infinity. In Euclidean geometry, such a "hypersphere of infinite radius" would be a hyperplane, but in hyperbolic geometry it is a horosphere (a curved surface). History The concept has its roots in a notion expressed by F. L. Wachter in 1816 in a letter to his teacher Gauss. Noting that in Euclidean geometry the limit of a sphere as its radius tends to infinity is a plane, Wachter affirmed that even if the fifth postulate were false, there would nevertheless be a geometry on the surface identical with that of the ordinary plane. The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |