Sech Distribution
In probability theory and statistics, the hyperbolic secant distribution is a continuous probability distribution whose probability density function and characteristic function are proportional to the hyperbolic secant function. The hyperbolic secant function is equivalent to the reciprocal hyperbolic cosine, and thus this distribution is also called the inverse-cosh distribution. Generalisation of the distribution gives rise to the Meixner distribution, also known as the Natural Exponential Family - Generalised Hyperbolic Secant or NEF-GHS distribution. Definitions Probability density function A random variable follows a hyperbolic secant distribution if its probability density function can be related to the following standard form of density function by a location and shift transformation: :f(x) = \frac12 \operatorname\frac, where "sech" denotes the hyperbolic secant function. Cumulative distribution function The cumulative distribution function (cdf) of the standar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyper Secant Pdf
Hyper may refer to: Arts and entertainment * ''Hyper'' (2016 film), 2016 Indian Telugu film * ''Hyper'' (2018 film), 2018 Indian Kannada film * ''Hyper'' (magazine), an Australian video game magazine * Hyper (TV channel), a Filipino sports channel * Hyper+, a former Polish programming block on Teletoon+ * '' Eedo Rakam Aado Rakam'', 2016 Indian Telugu film, titled ''Hyper'' in Hindi Mathematics * Hypercube, the n-dimensional analogue of a square and a cube * Hyperoperation, an arithmetic operation beyond exponentiation * Hyperplane, a subspace whose dimension is one less than that of its ambient space * Hypersphere, the set of points at a constant distance from a given point called its centre * Hypersurface, a generalization of the concepts of hyperplane, plane curve, and surface * Hyperstructure, an algebraic structure equipped with at least one multivalued operation * Hyperbolic functions, analogues of trigonometric functions defined using the hyperbola rather than the cir ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Median
The median of a set of numbers is the value separating the higher half from the lower half of a Sample (statistics), data sample, a statistical population, population, or a probability distribution. For a data set, it may be thought of as the “middle" value. The basic feature of the median in describing data compared to the Arithmetic mean, mean (often simply described as the "average") is that it is not Skewness, skewed by a small proportion of extremely large or small values, and therefore provides a better representation of the center. Median income, for example, may be a better way to describe the center of the income distribution because increases in the largest incomes alone have no effect on the median. For this reason, the median is of central importance in robust statistics. Median is a 2-quantile; it is the value that partitions a set into two equal parts. Finite set of numbers The median of a finite list of numbers is the "middle" number, when those numbers are liste ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Option (finance)
In finance, an option is a contract which conveys to its owner, the ''holder'', the right, but not the obligation, to buy or sell a specific quantity of an underlying asset or instrument at a specified strike price on or before a specified date, depending on the style of the option. Options are typically acquired by purchase, as a form of compensation, or as part of a complex financial transaction. Thus, they are also a form of asset (or contingent liability) and have a valuation that may depend on a complex relationship between underlying asset price, time until expiration, market volatility, the risk-free rate of interest, and the strike price of the option. Options may be traded between private parties in '' over-the-counter'' (OTC) transactions, or they may be exchange-traded in live, public markets in the form of standardized contracts. Definition and application An option is a contract that allows the holder the right to buy or sell an underlying asset or financia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Financial Mathematics
Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling in the Finance#Quantitative_finance, financial field. In general, there exist two separate branches of finance that require advanced quantitative techniques: Derivative (finance), derivatives pricing on the one hand, and risk management, risk and Investment management#Investment managers and portfolio structures, portfolio management on the other. Mathematical finance overlaps heavily with the fields of computational finance and financial engineering. The latter focuses on applications and modeling, often with the help of stochastic asset models, while the former focuses, in addition to analysis, on building tools of implementation for the models. Also related is quantitative investing, which relies on statistical and numerical models (and lately machine learning) as opposed to traditional fundamental analysis when investment ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Exponential Family
In probability and statistics, a natural exponential family (NEF) is a class of probability distributions that is a special case of an exponential family (EF). Definition Univariate case The natural exponential families (NEF) are a subset of the exponential families. A NEF is an exponential family in which the natural parameter ''η'' and the natural statistic ''T''(''x'') are both the identity. A distribution in an exponential family with parameter ''θ'' can be written with probability density function (PDF) f_X(x\mid \theta) = h(x)\ \exp\Big(\ \eta(\theta) T(x) - A(\theta)\ \Big) \,\! , where h(x) and A(\theta) are known functions. A distribution in a natural exponential family with parameter θ can thus be written with PDF f_X(x\mid \theta) = h(x)\ \exp\Big(\ \theta x - A(\theta)\ \Big) \,\! . [Note that slightly different notation is used by the originator of the NEF, Carl Morris.Morris C. (2006) "Natural exponential families", ''Encyclopedia of Statis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Josef Meixner
Josef Meixner (24 April 1908 – 19 March 1994) was a German theoretical physicist, known for his work on the physics of deformable bodies, thermodynamics, statistical mechanics, Meixner polynomials, Meixner–Pollaczek polynomials, and spheroidal wave functions.Meixner – CIO NIST Education Meixner began his studies in theoretical physics with at the in 1926. He was awarded his doctorate in 1931, with the submission of a thesis on the appli ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wolfram Language
The Wolfram Language ( ) is a proprietary, very high-level multi-paradigm programming language developed by Wolfram Research. It emphasizes symbolic computation, functional programming, and rule-based programming and can employ arbitrary structures and data. It is the programming language of the mathematical symbolic computation program Mathematica. History The Wolfram Language was part of the initial version of Mathematica in 1988. Symbolic aspects of the engine make it a computer algebra system. The language can perform integration, differentiation, matrix manipulations, and solve differential equations using a set of rules. Also, the initial version introduced the notebook model and the ability to embed sound and images, according to Theodore Gray's patent. Wolfram also added features for more complex tasks, such as 3D modeling. A name was finally adopted for the language in 2013, as Wolfram Research decided to make a version of the language engine free for Raspberry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Skewness
In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined. For a unimodal distribution (a distribution with a single peak), negative skew commonly indicates that the ''tail'' is on the left side of the distribution, and positive skew indicates that the tail is on the right. In cases where one tail is long but the other tail is fat, skewness does not obey a simple rule. For example, a zero value in skewness means that the tails on both sides of the mean balance out overall; this is the case for a symmetric distribution but can also be true for an asymmetric distribution where one tail is long and thin, and the other is short but fat. Thus, the judgement on the symmetry of a given distribution by using only its skewness is risky; the distribution shape must be taken into account. Introduction Consider the two d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Central Limit Theorem
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the Probability distribution, distribution of a normalized version of the sample mean converges to a Normal distribution#Standard normal distribution, standard normal distribution. This holds even if the original variables themselves are not Normal distribution, normally distributed. There are several versions of the CLT, each applying in the context of different conditions. The theorem is a key concept in probability theory because it implies that probabilistic and statistical methods that work for normal distributions can be applicable to many problems involving other types of distributions. This theorem has seen many changes during the formal development of probability theory. Previous versions of the theorem date back to 1811, but in its modern form it was only precisely stated as late as 1920. In statistics, the CLT can be stated as: let X_1, X_2, \dots, X_n denote a Sampling ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Independent Identically Distributed Random Variables
Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in Pennsylvania, United States * Independentes (English: Independents), a Portuguese artist group Music Groups, labels, and genres * Independent music, a number of genres associated with independent labels * Independent record label, a record label not associated with a major label * Independent Albums, American albums chart Albums * ''Independent'' (Ai album), 2012 * ''Independent'' (Faze album), 2006 * ''Independent'' (Sacred Reich album), 1993 Songs * "Independent" (song), a 2007 song by Webbie * "Independent", a 2002 song by Ayumi Hamasaki from '' H'' News media organizations * Independent Media Center (also known as Indymedia or IMC), an open publishing network of journalist collectives that report on political and social issues, e.g., in ''The Indypendent'' newspaper of NYC * ITV (TV network) (Independent Television ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inverse Hyperbolic Function
In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with ''arc-'' or ''ar-'' or with a superscript (for example , , or \sinh^). For a given value of a hyperbolic function, the inverse hyperbolic function provides the corresponding hyperbolic angle measure, for example \operatorname(\sinh a) = a and \sinh(\operatorname x) = x. Hyperbolic angle measure is the length of an arc of a unit hyperbola x^2 - y^2 = 1 as measured in the Lorentzian plane (''not'' the length of a hyperbolic arc in the Euclidean plane), and twice the area of the corresponding hyperbolic sector. This is analogous to the way circular angle measure ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |