Sahlqvist Formula
   HOME





Sahlqvist Formula
In modal logic, Sahlqvist formulas are a certain kind of modal formula with remarkable properties. The Sahlqvist correspondence theorem states that every Sahlqvist formula is canonical, and corresponds to a class of Kripke frames definable by a first-order formula. Sahlqvist's definition characterizes a decidable set of modal formulas with first-order correspondents. Since it is undecidable, by Chagrova's theorem, whether an arbitrary modal formula has a first-order correspondent, there are formulas with first-order frame conditions that are not Sahlqvist hagrova 1991(see the examples below). Hence Sahlqvist formulas define only a (decidable) subset of modal formulas with first-order correspondents. Definition Sahlqvist formulas are built up from implications, where the consequent is ''positive'' and the antecedent is of a restricted form. * A ''boxed atom'' is a propositional atom preceded by a number (possibly 0) of boxes, i.e. a formula of the form \Box\cdots\Box p (often ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modal Logic
Modal logic is a kind of logic used to represent statements about Modality (natural language), necessity and possibility. In philosophy and related fields it is used as a tool for understanding concepts such as knowledge, obligation, and causality, causation. For instance, in epistemic modal logic, the well-formed_formula, formula \Box P can be used to represent the statement that P is known. In deontic modal logic, that same formula can represent that P is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic modal logics treat the formula \Box P \rightarrow P as a Tautology_(logic), tautology, representing the principle that only true statements can count as knowledge. However, this formula is not a tautology in deontic modal logic, since what ought to be true can be false. Modal logics are formal systems that include unary operation, unary operators such as \Diamond and \Box, representing possibility and necessi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Henrik Sahlqvist
Henrik is a male given name of Germanic origin, primarily used in Scandinavia, Finland, Estonia, Hungary and Slovenia. In Poland, the name is spelt Henryk but pronounced similarly. Equivalents in other languages are Henry (English), Heiki (Estonian), Heikki (Finnish), Henryk (Polish), Hendrik (Dutch and Estonian), Heinrich (German), Enrico (Italian), Henri (French), Enrique (Spanish) and Henrique (Portuguese). It means 'Ruler of the home' or 'Lord of the house'. Notable people named Henrik include: * Henrik, Prince Consort of Denmark (1934–2018) * Prince Henrik of Denmark (born 2009) * Henrik Agerbeck (born 1956), Danish footballer * Henrik Andersson (badminton) (born 1977), Swedish player * Henrik Bull (other), several people * Henrik Christiansen (other), several people * Henrik Dagård (born 1969), Swedish decathlete * Henrik Dam (1895–1976), Danish biochemist, physiologist and Nobel laureate * Henrik Dettmann (born 1958), Finnish basketball coa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kripke Semantics
Kripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke (algebraic semantics existed, but were considered 'syntax in disguise'). Semantics of modal logic The language of propositional modal logic consists of a countably infinite set of propositional variables, a set of truth-functional connectives (in this article \to and \neg), and the modal operator \Box ("necessarily"). The modal operator \Diamond ("possibly") is (classically) the dual of \Box and may be defined in terms of necessity like so: \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decidable Set
In computability theory, a set of natural numbers is computable (or decidable or recursive) if there is an algorithm that computes the membership of every natural number in a finite number of steps. A set is noncomputable (or undecidable) if it is not computable. Definition A subset S of the natural numbers is computable if there exists a total computable function f such that: :f(x)=1 if x\in S :f(x)=0 if x\notin S. In other words, the set S is computable if and only if the indicator function \mathbb_ is computable. Examples *Every recursive language is a computable. *Every finite or cofinite subset of the natural numbers is computable. **The empty set is computable. **The entire set of natural numbers is computable. **Every natural number is computable. *The subset of prime numbers is computable. *The set of Gödel numbers is computable. Non-examples *The set of Turing machines that halt is not computable. *The set of pairs of homeomorphic finite simplicial complexes is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reflexive Relation
In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations. Etymology The word ''reflexive'' is originally derived from the Medieval Latin ''reflexivus'' ('recoiling' reflex.html" ;"title="f. ''reflex">f. ''reflex'' or 'directed upon itself') (c. 1250 AD) from the classical Latin ''reflexus-'' ('turn away', 'reflection') + ''-īvus'' (suffix). The word entered Early Modern English in the 1580s. The sense of the word meaning 'directed upon itself', as now used in mathematics, surviving mostly by its use in philosophy and grammar (cf. ''Reflexive verb'' and ''Reflexive pronoun''). The first e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Relation
A symmetric relation is a type of binary relation. Formally, a binary relation ''R'' over a set ''X'' is symmetric if: : \forall a, b \in X(a R b \Leftrightarrow b R a) , where the notation ''aRb'' means that . An example is the relation "is equal to", because if is true then is also true. If ''R''T represents the converse of ''R'', then ''R'' is symmetric if and only if . Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. Examples In mathematics * "is equal to" ( equality) (whereas "is less than" is not symmetric) * "is comparable to", for elements of a partially ordered set * "... and ... are odd": :::::: Outside mathematics * "is married to" (in most legal systems) * "is a fully biological sibling of" * "is a homophone of" * "is a co-worker of" * "is a teammate of" Relationship to asymmetric and antisymmetric relations By definition, a nonempty relation cannot be both symmetric and asymmetric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Relation
In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Every partial order and every equivalence relation is transitive. For example, less than and equality (mathematics), equality among real numbers are both transitive: If and then ; and if and then . Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy is also an ancestor of Carrie. On the other hand, "is the birth mother of" is not a transitive relation, because if Alice is the birth mother of Brenda, and Brenda is the birth mother of Claire, then it does ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dense Order
In mathematics, a partial order or total order < on a X is said to be dense if, for all x and y in X for which x < y, there is a z in X such that x < z < y. That is, for any two elements, one less than the other, there is another element between them. For total orders this can be simplified to "for any two distinct elements, there is another element between them", since all elements of a total order are comparable.


Example

The s as a linearly ordered set are a densely ordered set in this sense, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Church–Rosser Theorem
In lambda calculus, the Church–Rosser theorem states that, when applying reduction rules to terms, the ordering in which the reductions are chosen does not make a difference to the eventual result. More precisely, if there are two distinct reductions or sequences of reductions that can be applied to the same term, then there exists a term that is reachable from both results, by applying (possibly empty) sequences of additional reductions. The theorem was proved in 1936 by Alonzo Church and J. Barkley Rosser, after whom it is named. The theorem is symbolized by the adjacent diagram: If term ''a'' can be reduced to both ''b'' and ''c'', then there must be a further term ''d'' (possibly equal to either ''b'' or ''c'') to which both ''b'' and ''c'' can be reduced. Viewing the lambda calculus as an abstract rewriting system, the Church–Rosser theorem states that the reduction rules of the lambda calculus are confluent. As a consequence of the theorem, a term in the lambda cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Modal Logic
In logic, a normal modal logic is a set ''L'' of modal formulas such that ''L'' contains: * All propositional tautology (logic), tautologies; * All instances of the Kripke_semantics, Kripke schema: \Box(A\to B)\to(\Box A\to\Box B) and it is closed under: * Detachment rule (''modus ponens''): A\to B, A \in L implies B \in L; * Necessitation rule: A \in L implies \Box A \in L. The smallest logic satisfying the above conditions is called K. Most modal logics commonly used nowadays (in terms of having philosophical motivations), e.g. C. I. Lewis's S4 and S5 (modal logic), S5, are normal (and hence are extensions of K). However a number of deontic logic, deontic and epistemic logics, for example, are non-normal, often because they give up the Kripke schema. Every normal modal logic is regular modal logic, regular and hence classical modal logic, classical. Common normal modal logics The following table lists several common normal modal systems. The notation refers to the table at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Class
In model theory, a branch of mathematical logic, an elementary class (or axiomatizable class) is a class consisting of all structures satisfying a fixed first-order theory. Definition A class ''K'' of structures of a signature σ is called an elementary class if there is a first-order theory ''T'' of signature σ, such that ''K'' consists of all models of ''T'', i.e., of all σ-structures that satisfy ''T''. If ''T'' can be chosen as a theory consisting of a single first-order sentence, then ''K'' is called a basic elementary class. More generally, ''K'' is a pseudo-elementary class if there is a first-order theory ''T'' of a signature that extends σ, such that ''K'' consists of all σ-structures that are reducts to σ of models of ''T''. In other words, a class ''K'' of σ-structures is pseudo-elementary if and only if there is an elementary class ''K''' such that ''K'' consists of precisely the reducts to σ of the structures in ''K'''. For obvious reasons, elementary cla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]