Symmetric Relation
A symmetric relation is a type of binary relation. Formally, a binary relation ''R'' over a set ''X'' is symmetric if: : \forall a, b \in X(a R b \Leftrightarrow b R a) , where the notation ''aRb'' means that . An example is the relation "is equal to", because if is true then is also true. If ''R''T represents the converse of ''R'', then ''R'' is symmetric if and only if . Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. Examples In mathematics * "is equal to" ( equality) (whereas "is less than" is not symmetric) * "is comparable to", for elements of a partially ordered set * "... and ... are odd": :::::: Outside mathematics * "is married to" (in most legal systems) * "is a fully biological sibling of" * "is a homophone of" * "is a co-worker of" * "is a teammate of" Relationship to asymmetric and antisymmetric relations By definition, a nonempty relation cannot be both symmetric and asymmetric ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Binary Relation
In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs (x, y), where x is an element of X and y is an element of Y. It encodes the common concept of relation: an element x is ''related'' to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime p is related to each integer z that is a Divisibility, multiple of p, but not to an integer that is not a Multiple (mathematics), multiple of p. In this relation, for instance, the prime number 2 is related to numbers such as -4, 0, 6, 10, but not to 1 or 9, just as the prime number 3 is related to 0, 6, and 9, but not to 4 or 13. Binary relations ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Asymmetric Relation
In mathematics, an asymmetric relation is a binary relation R on a set X where for all a, b \in X, if a is related to b then b is ''not'' related to a. Formal definition Preliminaries A binary relation on X is any subset R of X \times X. Given a, b \in X, write a R b if and only if (a, b) \in R, which means that a R b is shorthand for (a, b) \in R. The expression a R b is read as "a is related to b by R." Definition The binary relation R is called if for all a, b \in X, if a R b is true then b R a is false; that is, if (a, b) \in R then (b, a) \not\in R. This can be written in the notation of first-order logic as \forall a, b \in X: a R b \implies \lnot(b R a). A logically equivalent definition is: :for all a, b \in X, at least one of a R b and b R a is , which in first-order logic can be written as: \forall a, b \in X: \lnot(a R b \wedge b R a). A relation is asymmetric if and only if it is both antisymmetric and irreflexive, so this may also be taken as a definit ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Quasireflexive Relation
In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations. Etymology The word ''reflexive'' is originally derived from the Medieval Latin ''reflexivus'' ('recoiling' reflex.html" ;"title="f. ''reflex">f. ''reflex'' or 'directed upon itself') (c. 1250 AD) from the classical Latin ''reflexus-'' ('turn away', 'reflection') + ''-īvus'' (suffix). The word entered Early Modern English in the 1580s. The sense of the word meaning 'directed upon itself', as now used in mathematics, surviving mostly by its use in philosophy and grammar (cf. ''Reflexive verb'' and ''Reflexive pronoun''). The first exp ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Transitive Relation
In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Every partial order and every equivalence relation is transitive. For example, less than and equality (mathematics), equality among real numbers are both transitive: If and then ; and if and then . Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy is also an ancestor of Carrie. On the other hand, "is the birth mother of" is not a transitive relation, because if Alice is the birth mother of Brenda, and Brenda is the birth mother of Claire, then it does ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Permutation
In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first meaning is the six permutations (orderings) of the set : written as tuples, they are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Anagrams of a word whose letters are all different are also permutations: the letters are already ordered in the original word, and the anagram reorders them. The study of permutations of finite sets is an important topic in combinatorics and group theory. Permutations are used in almost every branch of mathematics and in many other fields of science. In computer science, they are used for analyzing sorting algorithms; in quantum physics, for describing states of particles; and in biology, for describing RNA sequences. The number of permutations of distinct objects is factorial, us ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Integer Division
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the ''dividend'', which is divided by the ''divisor'', and the result is called the '' quotient''. At an elementary level the division of two natural numbers is, among other possible interpretations, the process of calculating the number of times one number is contained within another. For example, if 20 apples are divided evenly between 4 people, everyone receives 5 apples (see picture). However, this number of times or the number contained (divisor) need not be integers. The division with remainder or Euclidean division of two natural numbers provides an integer '' quotient'', which is the number of times the second number is completely contained in the first number, and a ''remainder'', which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the siz ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Congruence Relation
In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group (mathematics), group, ring (mathematics), ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding Equivalence class, quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation. Definition The definition of a congruence depends on the type of algebraic structure under consideration. Particular definitions of congruence can be made for group (mathematics), groups, ring (mathematics), rings, vector spaces, module (mathematics), modules, semigroups, lattice (order), lattices, and so forth. The common theme is that a congruence is an equivalence relation on an algebraic object that is compatible with the algebraic structure, in the sense that the operat ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer n is divisible by a nonzero integer m if there exists an integer k such that n=km. This is written as : m\mid n. This may be read as that m divides n, m is a divisor of n, m is a factor of n, or n is a multiple of m. If m does not divide n, then the notation is m\not\mid n. There are two conventions, distinguished by whether m is permitted to be zero: * With the convention without an additional constraint on m, m \mid 0 for every integer m. * With the convention that m be nonzero, m \mid 0 for every nonzero integer m. General Divisors can be negative as well as positive, although often the term is restricted to posi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Antisymmetric Relation
In mathematics, a binary relation R on a set X is antisymmetric if there is no pair of ''distinct'' elements of X each of which is related by R to the other. More formally, R is antisymmetric precisely if for all a, b \in X, \text \,aRb\, \text \,a \neq b\, \text \,bRa\, \text, or equivalently, \text \,aRb\, \text \,bRa\, \text \,a = b. The definition of antisymmetry says nothing about whether aRa actually holds or not for any a. An antisymmetric relation R on a set X may be reflexive (that is, aRa for all a \in X), irreflexive (that is, aRa for no a \in X), or neither reflexive nor irreflexive. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. Examples The divisibility relation on the natural numbers is an important example of an antisymmetric relation. In this context, antisymmetry means that the only way each of two numbers can be divisible by the other is if the two are, in fact, the same number; equivalently, if n and m are distinct and ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |