STEREO Experiment
   HOME



picture info

STEREO Experiment
The STEREO experiment (Search for Sterile Reactor Neutrino Oscillations) investigated the possible neutrino oscillation, oscillation of neutrinos from a nuclear reactor into light so-called sterile neutrinos. It was located at the Institut Laue–Langevin (ILL) in Grenoble, France. The experiment took data from November 2016 to November 2020. The final results of the experiment rejected the hypothesis of a light sterile neutrino. Detector Measuring principle The STEREO detector is placed at a distance of 10 m away from the research reactor at the ILL. The research reactor has a thermal power of 58 MW. STEREO is supposed to measure the neutrino flux and spectrum near the reactor. To be able to detect the neutrinos radiated from the reactor, the detector is filled up with 1800 litres of organic liquid scintillator which is doped with gadolinium. Inside the scintillator neutrinos are captured via the process of inverse beta decay :\overline_e + p \rightarrow n + e^+ In t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino Oscillation
Neutrino oscillation is a quantum mechanics, quantum mechanical phenomenon in which a neutrino created with a specific lepton lepton number, family number ("lepton flavor": electron, muon, or tau lepton, tau) can later be Quantum measurement, measured to have a different lepton family number. The probability of measuring a particular Flavour (particle physics), flavor for a neutrino varies between three known states, as it propagates through space. First predicted by Bruno Pontecorvo in 1957, reproduced and translated in reproduced and translated in neutrino oscillation has since been observed by a multitude of experiments in several different contexts. Most notably, the existence of neutrino oscillation resolved the long-standing solar neutrino problem. Neutrino oscillation is of great theoretical physics, theoretical and experimental physics, experimental interest, as the precise properties of the process can shed light on several properties of the neutrino. In particular, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Muon
A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of  ''ħ'', but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles. The muon is an unstable subatomic particle with a mean lifetime of , much longer than many other subatomic particles. As with the decay of the free neutron (with a lifetime around 15 minutes), muon decay is slow (by subatomic standards) because the decay is mediated only by the weak interaction (rather than the more powerful strong interaction or electromagnetic interaction), and because the mass difference between the muon and the set of its decay products is small, providing few kinetic degrees of freedom for decay. Muon decay almost always produces at least three particles, which must include an electron of the same charge as the muon and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino Observatories
A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles (excluding massless particles). The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Consequently, neutrinos typically pass through normal matter unimpeded and with no detectable effect. Weak interactions create neutrinos in one of three leptonic flavors: # electron neutrino, # muon neutrino, # tau neutrino, Each flavor is associated with the correspondingly named charged lepton. Although neutrinos were long believed to be massless, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




INSPIRE-HEP
INSPIRE-HEP is an open access digital library for the field of high energy physics (HEP). It is the successor of the Stanford Physics Information Retrieval System (SPIRES) database, the main literature database for high energy physics since the 1970s. History SPIRES was (in addition to the CERN Document Server (CDS), arXiv and parts of Astrophysics Data System) one of the main Particle Information Resources. A survey conducted in 2007 found that SPIRES database users wanted the portal to provide more services than the, at that time, already 30-year-old system could provide. On the second annual Summit of Information Specialists in Particle Physics and Astrophysics in May 2008, the physics laboratories CERN, DESY, SLAC and Fermilab therefore announced that they would work together to create a new Scientific Information System for high energy physics called INSPIRE. It interacts with other HEP service providers like arXiv.org, Particle Data Group, NASA The National A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seesaw Mechanism
In the theory of grand unification of particle physics, and, in particular, in theories of neutrino masses and neutrino oscillation, the seesaw mechanism is a generic model used to understand the relative sizes of observed neutrino masses, of the order of eV, compared to those of quarks and charged leptons, which are millions of times heavier. The name of the seesaw mechanism was given by Tsutomu Yanagida in a Tokyo conference in 1981. There are several types of models, each extending the Standard Model. The simplest version, "Type 1", extends the Standard Model by assuming two or more additional right-handed neutrino fields inert under the electroweak interaction, and the existence of a very large mass scale. This allows the mass scale to be identifiable with the postulated scale of grand unification. Type 1 seesaw This model produces a light neutrino, for each of the three known neutrino flavors, and a corresponding very heavy neutrino for each flavor, which has yet to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Model Of Particle Physics
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated some success in providing experimental predictions, it leaves some physical phenomena unexplained and so falls short of being a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Large Electron–Positron Collider
The Large Electron–Positron Collider (LEP) was one of the largest particle accelerators ever constructed. It was built at CERN, a multi-national centre for research in nuclear and particle physics near Geneva, Switzerland. LEP collided electrons with positrons at energies that reached 209 GeV. It was a circular collider with a circumference of 27 kilometres built in a tunnel roughly 100 m (300 ft) underground and passing through Switzerland and France. LEP was used from 1989 until 2000. Around 2001 it was dismantled to make way for the Large Hadron Collider, which re-used the LEP tunnel. To date, LEP is the most powerful accelerator of leptons ever built. Collider background LEP was a circular lepton collider – the most powerful such ever built. For context, modern colliders can be generally categorized based on their shape (circular or linear) and on what types of particles they accelerate and collide (leptons or hadrons). Leptons are point particles and are rela ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

W And Z Bosons
In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and . The  bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The  boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The  bosons have a magnetic moment, but the has none. All three of these particles are very short-lived, with a half-life of about . Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics. The  bosons are named after the ''weak'' force. The physicist Steven Weinberg named the additional particle the " particle", — The electroweak unification paper. and later gave the explanation that it was the last additional particle ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decay Width
Decay may refer to: Science and technology * Bit decay, in computing * Decay time (fall time), in electronics * Distance decay, in geography * Software decay, in computing Biology * Decomposition of organic matter * Mitochondrial decay, in genetics * Tooth decay (dental caries), in dentistry Physics * Optical decay, in quantum physics * Orbital decay, the process of prolonged reduction in the height of a satellite's orbit * Particle decay * Radioactive decay * False vacuum decay Mathematics * Exponential decay Psychology and sociology * Decay theory, in psychology and memory * Social decay (decadence), in sociology * Urban decay, in sociology Entertainment * Network decay (channel drift), in television programming * Decay (DC Comics), a comic book character * '' Half-Life: Decay'', a 2001 video game add-on * Deekay, a Danish production team * Decay (professional wrestling), a professional wrestling stable in TNA Wrestling Film * ''Decay'' (2012 film), a 2012 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

STEREO Neutrino Experiment Final Results
Stereophonic sound, commonly shortened to stereo, is a method of sound reproduction that recreates a multi-directional, 3-dimensional audible perspective. This is usually achieved by using two independent audio channels through a configuration of two loudspeakers (or stereo headphones) in such a way as to create the impression of sound heard from various directions, as in natural hearing. Because the multi-dimensional perspective is the crucial aspect, the term ''stereophonic'' also applies to systems with more than two channels or speakers such as quadraphonic and surround sound. Binaural sound systems are also ''stereophonic''. Stereo sound has been in common use since the 1970s in entertainment media such as broadcast radio, recorded music, television, video cameras, cinema, computer audio, and the Internet. Etymology The word ''stereophonic'' derives from the Greek (''stereós'', "firm, solid") + (''phōnḗ'', "sound, tone, voice") and it was coined in 1927 by West ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GALLEX
GALLEX or Gallium Experiment was a radiochemical neutrino detection experiment that ran between 1991 and 1997 at the Laboratori Nazionali del Gran Sasso (LNGS). This project was performed by an international collaboration of French, German, Italian, Israeli, Polish and American scientists led by the Max-Planck-Institut für Kernphysik Heidelberg. After brief interruption, the experiment was continued under a new name GNO (Gallium Neutrino Observatory) from May 1998 to April 2003. It was designed to detect solar neutrinos and prove theories related to the Sun's energy creation mechanism. Before this experiment (and the SAGE experiment that ran concurrently), there had been no observation of low energy solar neutrinos. Location The experiment's main components, the tank and the counters, were located in the underground astrophysical laboratory Laboratori Nazionali del Gran Sasso in the Italian Abruzzo province, near L'Aquila, and situated inside the 2912-metre-high Gran Sasso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boron Carbide
Boron carbide (chemical formula approximately B4C) is an extremely hard boron–carbon ceramic, a covalent material used in tank armor, bulletproof vests, engine sabotage powders, as well as numerous industrial applications. With a Vickers hardness of >30 GPa, it is one of the hardest known materials, behind cubic boron nitride and diamond. History Boron carbide was discovered in the 19th century as a by-product of reactions involving metal borides, but its chemical formula was unknown. It was not until the 1930s that the chemical composition was estimated as B4C. Controversy remained as to whether or not the material had this exact 4:1 stoichiometry, as, in practice the material is always slightly carbon-deficient with regard to this formula, and X-ray crystallography shows that its structure is highly complex, with a mixture of C-B-C chains and B12 icosahedra. These features argued against a very simple exact B4C empirical formula. Because of the B12 structural unit, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]