HOME





SLC27A5
Bile acyl-CoA synthetase is an enzyme that in humans is encoded by the ''SLC27A5'' gene. The protein encoded by this gene is an isozyme of very long-chain acyl-CoA synthetase ( VLCS). It is capable of activating very long-chain fatty-acids containing 24- and 26-carbons. It is expressed in liver and associated with endoplasmic reticulum but not with peroxisomes. Its primary role is in fatty acid elongation or complex lipid synthesis rather than in degradation. This gene has a mouse ortholog. See also * Solute carrier family The solute carrier (SLC) group of membrane transport proteins include over 400 members organized into 66 families. Most members of the SLC group are located in the cell membrane. The SLC gene nomenclature system was originally proposed by the HUGO ... References Further reading * * * * * * * Solute carrier family Acyl-CoA synthetase {{gene-19-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


VLCS
Fatty acid transport proteins (FATPs, SLC27, SLC27A) are a family of trans-membrane transport proteins, which allow and enhance the uptake of long chain fatty acids into cells. This subfamily is part of the solute carrier protein family. Within humans this family contains six very homologous proteins, which are expressed in all tissues of the body which use fatty acids: * SLC27A1 (FATP1) Long-chain fatty acid transport protein 1 * SLC27A2 (FATP2) Very long-chain acyl-CoA synthetase * SLC27A3 (FATP3) Solute carrier family 27 member 3 * SLC27A4 (FATP4) Long-chain fatty acid transport protein 4 * SLC27A5 Bile acyl-CoA synthetase is an enzyme that in humans is encoded by the ''SLC27A5'' gene. The protein encoded by this gene is an isozyme of very long-chain acyl-CoA synthetase ( VLCS). It is capable of activating very long-chain fatty-acids cont ... (FATP5) Bile acyl-CoA synthetase * SLC27A6 (FATP6) Long-chain fatty acid transport protein 6 References {{Reflist Protein fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Very Long-chain Fatty-acid
A very-long-chain fatty acid (VLCFA) is a fatty acid with 22 or more carbons. Their biosynthesis occurs in the endoplasmic reticulum. VLCFA's can represent up to a few percent of the total fatty acid content of a cell. Unlike most fatty acids, VLCFAs are too long to be metabolized in the mitochondria, in the endoplasmic reticulum (ER) in plants and must be metabolized in peroxisomes. Certain peroxisomal disorders, such as adrenoleukodystrophy and Zellweger syndrome, can be associated with an accumulation of VLCFAs. Enzymes that produce VLCFAs are the targets of herbicides including pyroxasulfone. Major VLCFAs Some of the more common saturated VLCFAs: lignoceric acid (C24), cerotic acid (C26), montanic acid (C28), melissic acid (C30), lacceroic acid (C32), ghedoic acid (C34), and the odd-chain fatty acid ceroplastic acid (C35). Several monounsaturated VLCFAs are also known: nervonic acid (Δ15-24:1), ximenic acid (Δ17-26:1), and lumequeic acid (Δ21-30:1). See als ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solute Carrier Family
The solute carrier (SLC) group of membrane transport proteins include over 400 members organized into 66 families. Most members of the SLC group are located in the cell membrane. The SLC gene nomenclature system was originally proposed by the HUGO Gene Nomenclature Committee (HGNC) and is the basis for the official HGNC names of the genes that encode these transporters. A more general transmembrane transporter classification can be found in TCDB, TCDB database. Solutes that are transported by the various SLC group members are extremely diverse and include both charged and uncharged organic molecules as well as inorganic ions and the gas Ammonia transporter, ammonia. As is typical of integral membrane proteins, SLCs contain a number of hydrophobic transmembrane Alpha helix, alpha helices connected to each other by hydrophilic intra- and extra-cellular loops. Depending on the SLC, these transporters are functional as either monomers or obligate homo- or hetero-oligomers. Many SLC fam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecules known as product (chemistry), products. Almost all metabolism, metabolic processes in the cell (biology), cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called ''enzymology'' and the field of pseudoenzyme, pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties. Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts include Ribozyme, catalytic RNA molecules, also called ribozymes. They are sometimes descr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and non-coding genes. During gene expression (the synthesis of Gene product, RNA or protein from a gene), DNA is first transcription (biology), copied into RNA. RNA can be non-coding RNA, directly functional or be the intermediate protein biosynthesis, template for the synthesis of a protein. The transmission of genes to an organism's offspring, is the basis of the inheritance of phenotypic traits from one generation to the next. These genes make up different DNA sequences, together called a genotype, that is specific to every given individual, within the gene pool of the population (biology), population of a given species. The genotype, along with environmental and developmental factors, ultimately determines the phenotype ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isozyme
In biochemistry, isozymes (also known as isoenzymes or more generally as multiple forms of enzymes) are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. Isozymes usually have different kinetic parameters (e.g. different ''K''M values), or are regulated differently. They permit the fine-tuning of metabolism to meet the particular needs of a given tissue or developmental stage. In many cases, isozymes are encoded by homologous genes that have diverged over time. Strictly speaking, enzymes with different amino acid sequences that catalyse the same reaction are isozymes if encoded by different genes, or allozymes if encoded by different alleles of the same gene; the two terms are often used interchangeably. Introduction Isozymes were first described by R. L. Hunter and Clement Markert (1957) who defined them as ''different variants of the same enzyme having identical functions and present in the same individual''. This definition encompasses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Endoplasmic Reticulum
The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for "little net". It is a type of organelle made up of two subunits – rough endoplasmic reticulum (RER), and smooth endoplasmic reticulum (SER). The endoplasmic reticulum is found in most eukaryotic cells and forms an interconnected network of flattened, membrane-enclosed sacs known as cisternae (in the RER), and tubular structures in the SER. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum is not found in red blood cells, or spermatozoa. There are two types of ER that share many of the same proteins and engage in certain common activities such as the synthesis of certain lipids and cholesterol. Different types of Cell (biology), cells contain different ratios of the two types of ER dependin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Peroxisome
A peroxisome () is a membrane-bound organelle, a type of microbody, found in the cytoplasm of virtually all eukaryotic cells. Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen peroxide (H2O2) is then formed. Peroxisomes owe their name to hydrogen peroxide-generating and scavenging activities. They perform key roles in lipid metabolism and the redox, reduction of reactive oxygen species. Peroxisomes are involved in the catabolism of very long chain fatty acids, branched chain fatty acids, bile acid intermediates (in the liver), D-amino acids, and polyamines. Peroxisomes also play a role in the biosynthesis of plasmalogens: ether phospholipids critical for the normal function of mammalian brains and lungs. Peroxisomes contain approximately 10% of the total activity of two enzymes (Glucose-6-phosphate dehydrogenase and Phosphogluconate dehydrogenase, 6-Phosphogluconate dehydrogenase) in the pentose phosphate pathway, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]