HOME





Regular
Regular may refer to: Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instruments, tunings with equal intervals between the paired notes of successive open strings Other uses * Regular character, a main character who appears more frequently and/or prominently than a recurring character * Regular division of the plane, a series of drawings by the Dutch artist M. C. Escher which began in 1936 Language * Regular inflection, the formation of derived forms such as plurals in ways that are typical for the language ** Regular verb * Regular script, the newest of the Chinese script styles Mathematics Algebra and number theory * Regular category, a kind of category that has similarities to both Abelian categories and to the category of sets * Regular chains in computer algebra * Regular element (other), certain kinds of elements of an algebraic structure * Regular extension of fields * Regular ideal (multiple definitions) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Prime
In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are: : 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... . History and motivation In 1850, Kummer proved that Fermat's Last Theorem is true for a prime exponent ''p'' if ''p'' is regular. This focused attention on the irregular primes. In 1852, Genocchi was able to prove that the first case of Fermat's Last Theorem is true for an exponent ''p'', if is not an irregular pair. Kummer improved this further in 1857 by showing that for the "first case" of Fermat's Last Theorem (see Sophie Germain's theorem) it is sufficient to establish that either or fails to be an irregular pair. ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Verb
A regular verb is any verb whose conjugation follows the typical pattern, or one of the typical patterns, of the language to which it belongs. A verb whose conjugation follows a different pattern is called an irregular verb. This is one instance of the distinction between regular and irregular inflection, which can also apply to other word classes, such as nouns and adjectives. In English, for example, verbs such as ''play'', ''enter'', and ''like'' are regular since they form their inflected parts by adding the typical endings ''-s'', ''-ing'' and ''-ed'' to give forms such as ''plays'', ''entering'', and ''liked''. On the other hand, verbs such as ''drink'', ''hit'' and ''have'' are irregular since some of their parts are not made according to the typical pattern: ''drank'' and ''drunk'' (not "drinked"); ''hit'' (as past tense and past participle, not "hitted") and ''has'' and ''had'' (not "haves" and "haved"). The classification of verbs as regular or irregular is to some e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Ideal
In mathematics, especially ring theory, a regular ideal can refer to multiple concepts. In operator theory, a right ideal (ring theory), ideal \mathfrak in a (possibly) non-unital ring ''A'' is said to be regular (or modular) if there exists an element ''e'' in ''A'' such that ex - x \in \mathfrak for every x \in A. In commutative algebra a regular ideal refers to an ideal containing a non-zero divisor. This article will use "regular element ideal" to help distinguish this type of ideal. A two-sided ideal \mathfrak of a ring ''R'' can also be called a (von Neumann) regular ideal if for each element ''x'' of \mathfrak there exists a ''y'' in \mathfrak such that ''xyx''=''x''. Finally, regular ideal has been used to refer to an ideal ''J'' of a ring ''R'' such that the quotient ring ''R''/''J'' is von Neumann regular ring.Burton, D.M. (1970) ''A first course in rings and ideals.'' Addison-Wesley. Reading, Massachusetts . This article will use "quotient von Neumann regular" to refer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Ring
In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be any Noetherian local ring with unique maximal ideal \mathfrak, and suppose a_1,\cdots,a_n is a minimal set of generators of \mathfrak. Then Krull's principal ideal theorem implies that n\geq\dim A, and A is regular whenever n=\dim A. The concept is motivated by its geometric meaning. A point x on an algebraic variety X is nonsingular (a smooth point) if and only if the local ring \mathcal_ of germs at x is regular. (See also: regular scheme.) Regular local rings are ''not'' related to von Neumann regular rings. For Noetherian local rings, there is the following chain of inclusions: Characterizations There are a number of useful definitions of a regular local ring, one of which is mentioned above. In particular, if A is a Noetherian local ring with maximal ideal \mathfrak, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Number
Regular numbers are numbers that evenly divide powers of 60 (or, equivalently, powers of 30). Equivalently, they are the numbers whose only prime divisors are 2, 3, and 5. As an example, 602 = 3600 = 48 × 75, so as divisors of a power of 60 both 48 and 75 are regular. These numbers arise in several areas of mathematics and its applications, and have different names coming from their different areas of study. * In number theory, these numbers are called 5-smooth, because they can be characterized as having only 2, 3, or 5 as their prime factors. This is a specific case of the more general -smooth numbers, the numbers that have no prime factor greater * In the study of Babylonian mathematics, the divisors of powers of 60 are called regular numbers or regular sexagesimal numbers, and are of great importance in this area because of the sexagesimal (base 60) number system that the Babylonians used for writing their numbers, and that was cent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Tuning
Among guitar tunings#Alternative, alternative guitar tunings, guitar-tunings, regular tunings have equal interval (music), musical intervals between the paired note (music), notes of their successive open string (music), open strings. ''Guitar tuning (music), tunings'' assign pitch (music), pitches to the open string (music), open strings of guitars. Tunings can be described by the particular pitches that are denoted by notes in Western music. By convention, the notes are ordered from lowest to highest. The ''standard tuning'' defines the string pitches as E, A, D, G, B, and E. Between the open-strings of the standard tuning are three perfect fourth, perfect-fourths (E–A, A–D, D–G), then the major third G–B, and the fourth perfect-fourth B–E. In contrast, regular tunings have constant intervals between their successive open-strings: * 3 semitones (minor third): #Minor thirds, Minor-thirds, or ''Diminished'' tuning * 4 semitones (major third): Major- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Function
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials. An algebraic variety has naturally the structure of a locally ringed space; a morphism between algebraic varieties is precisely a morphism of the underlying locally ringed spaces. Definition If ''X'' and ''Y'' are closed subvarieties of \mathbb^n and \mathbb^m (so they are affine vari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann Regular Ring
In mathematics, a von Neumann regular ring is a ring ''R'' (associative, with 1, not necessarily commutative) such that for every element ''a'' in ''R'' there exists an ''x'' in ''R'' with . One may think of ''x'' as a "weak inverse" of the element ''a''; in general ''x'' is not uniquely determined by ''a''. Von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left ''R''-module is flat. Von Neumann regular rings were introduced by under the name of "regular rings", in the course of his study of von Neumann algebras and continuous geometry. Von Neumann regular rings should not be confused with the unrelated regular rings and regular local rings of commutative algebra. An element ''a'' of a ring is called a von Neumann regular element if there exists an ''x'' such that . An ideal \mathfrak is called a (von Neumann) regular ideal if for every element ''a'' in \mathfrak there exists an element ''x'' in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Measure
In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets. Definition Let (''X'', ''T'') be a topological space and let Σ be a σ-algebra on ''X''. Let ''μ'' be a measure on (''X'', Σ). A measurable subset ''A'' of ''X'' is said to be inner regular if :\mu (A) = \sup \ This property is sometimes referred to in words as "approximation from within by compact sets." Some authors use the term tight as a synonym for inner regular. This use of the term is closely related to tightness of a family of measures, since a finite measure ''μ'' is inner regular if and only if, for all ''ε'' > 0, there is some compact subset ''K'' of ''X'' such that ''μ''(''X'' \ ''K'') < ''ε''. This is precisely the condition that the
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Inflection
In linguistic morphology, inflection (less commonly, inflexion) is a process of word formation in which a word is modified to express different grammatical categories such as tense, case, voice, aspect, person, number, gender, mood, animacy, and definiteness. The inflection of verbs is called ''conjugation'', while the inflection of nouns, adjectives, adverbs, etc. can be called ''declension''. An inflection expresses grammatical categories with affixation (such as prefix, suffix, infix, circumfix, and transfix), apophony (as Indo-European ablaut), or other modifications. For example, the Latin verb ', meaning "I will lead", includes the suffix ', expressing person (first), number (singular), and tense-mood (future indicative or present subjunctive). The use of this suffix is an inflection. In contrast, in the English clause "I will lead", the word ''lead'' is not inflected for any of person, number, or tense; it is simply the bare form of a verb. The inflected form of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Category
In category theory, a regular category is a category with limit (category theory), finite limits and coequalizers of all pairs of morphisms called kernel pairs, satisfying certain ''exactness'' conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of ''images'', without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic. Definition A category ''C'' is called regular if it satisfies the following three properties: * ''C'' is finitely complete category, finitely complete. * If ''f'' : ''X'' → ''Y'' is a morphism in ''C'', and : is a pullback (category theory), pullback, then the coequalizer of ''p''0, ''p''1 exists. The pair (''p''0, ''p''1) is called the kernel pair of ''f''. Being a pullback, the kernel pair is unique up to a unique isomorphism. * If ''f'' : ''X'' →&nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Semigroup
In mathematics, a regular semigroup is a semigroup ''S'' in which every element is regular, i.e., for each element ''a'' in ''S'' there exists an element ''x'' in ''S'' such that . Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations. History Regular semigroups were introduced by J. A. Green in his influential 1951 paper "On the structure of semigroups"; this was also the paper in which Green's relations were introduced. The concept of ''regularity'' in a semigroup was adapted from an analogous condition for rings, already considered by John von Neumann. It was Green's study of regular semigroups which led him to define his celebrated relations. According to a footnote in Green 1951, the suggestion that the notion of regularity be applied to semigroups was first made by David Rees. The term inversive semigroup (French: demi-groupe inversif) was historically used as synonym in the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]