Reduced Homology
In mathematics, reduced homology is a minor modification made to homology theory in algebraic topology, motivated by the intuition that all of the homology groups of a single point should be equal to zero. This modification allows more concise statements to be made (as in Alexander duality) and eliminates many exceptional cases (as in the homology groups of spheres). If ''P'' is a single-point space, then with the usual definitions the integral homology group :''H''0(''P'') is isomorphic to \mathbb (an infinite cyclic group), while for ''i'' ≥ 1 we have :''H''''i''(''P'') = . More generally if ''X'' is a simplicial complex or finite CW complex, then the group ''H''0(''X'') is the free abelian group with the connected components of ''X'' as generators. The reduced homology should replace this group, of rank ''r'' say, by one of rank ''r'' − 1. Otherwise the homology groups should remain unchanged. An ''ad hoc'' way to do this is to think of a 0-th homology class no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal Sum , a sum of infinitely many monomials with distinct positive integer exponents, again considered as an abstract object regardless ...
In mathematics, a formal sum, formal series, or formal linear combination may be: *In group theory, an element of a free abelian group, a sum of finitely many elements from a given basis set multiplied by integer coefficients. *In linear algebra, an element of a vector space, a sum of finitely many elements from a given basis set multiplied by real, complex, or other numerical coefficients. *In the study of series (mathematics), a sum of an infinite sequence of numbers or other quantities, considered as an abstract mathematical object regardless of whether the sum converges. *In the study of power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Allen Hatcher
Allen Edward Hatcher (born October 23, 1944) is an American mathematician specializing in geometric topology. Biography Hatcher was born in Indianapolis, Indiana. After obtaining his Bachelor of Arts, B.A. and Bachelor of Music, B.Mus. from Oberlin College in 1966, he went for his graduate studies to Stanford University, where he received his Doctor of Philosophy, Ph.D. in 1971. His thesis, ''A K2 Obstruction for Pseudo-Isotopies'', was written under the supervision of Hans Samelson. Afterwards, Hatcher went to Princeton University, where he was an National Science Foundation, NSF postdoc for a year, then a lecturer for another year, and then Assistant Professor from 1973 to 1979. He was also a member of the Institute for Advanced Study in 1975–76 and 1979–80. Hatcher moved to the University of California, Los Angeles as an assistant professor in 1977. From 1983 he has been a professor at Cornell University; he is now a emeritus, professor emeritus. In 1978 Hatcher was an Li ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hom Functor
In mathematics, specifically in category theory, hom-sets (i.e. sets of morphisms between object (category theory), objects) give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics. Formal definition Let ''C'' be a locally small category (i.e. a category (mathematics), category for which hom-classes are actually Set (mathematics), sets and not proper classes). For all objects ''A'' and ''B'' in ''C'' we define two functors to the category of sets as follows: : The functor Hom(–, ''B'') is also called the ''functor of points'' of the object ''B''. Note that fixing the first argument of Hom naturally gives rise to a covariant functor and fixing the second argument naturally gives a contravariant functor. This is an artifact of the way in which one must compose the morphisms. The pair of functors Hom(''A'', –) and Hom(–, ''B'') are related in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cochain Complex
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is contained in the kernel of the next. Associated to a chain complex is its homology, which is (loosely speaking) a measure of the failure of a chain complex to be exact. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology. In algebraic topology, the singular chain complex of a topological space X is constructed using continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain complex is called the singular homology of X, and is a commonly used invariant of a topological space. Chain complexes are studied in homological algebra, but ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cohomology Group
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its start in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V\times W \rightarrow V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted . An element of the form v \otimes w is called the tensor product of v and w. An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for V and W, a basis of V \otimes W is formed by all tensor products of a basis element of V and a basis element of W. The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space Z factors uniquely through a linear map V\otimes W\to Z (see the section below ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homology (mathematics)
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of Abelian group, abelian groups called ''homology groups.'' This operation, in turn, allows one to associate various named ''homologies'' or ''homology theories'' to various other types of mathematical objects. Lastly, since there are many homology theories for Topological space, topological spaces that produce the same answer, one also often speaks of the ''homology of a topological space''. (This latter notion of homology admits more intuitive descriptions for 1- or 2-dimensional topological spaces, and is sometimes referenced in popular mathematics.) There is also a related notion of the cohomology of a Cochain complexes, cochain complex, giving rise to various cohomology theories, in addition to the notion of the cohomology of a topological space. Ho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union (set theory), union of two or more disjoint set, disjoint Empty set, non-empty open (topology), open subsets. Connectedness is one of the principal topological properties that distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a Subspace topology, subspace of X. Some related but stronger conditions are #Path connectedness, path connected, Simply connected space, simply connected, and N-connected space, n-connected. Another related notion is Locally connected space, locally connected, which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. So ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homology Theory
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian groups called ''homology groups.'' This operation, in turn, allows one to associate various named ''homologies'' or ''homology theories'' to various other types of mathematical objects. Lastly, since there are many homology theories for topological spaces that produce the same answer, one also often speaks of the ''homology of a topological space''. (This latter notion of homology admits more intuitive descriptions for 1- or 2-dimensional topological spaces, and is sometimes referenced in popular mathematics.) There is also a related notion of the cohomology of a cochain complex, giving rise to various cohomology theories, in addition to the notion of the cohomology of a topological space. Homology of chain complexes To take the homology o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Abelian Group
In mathematics, a free abelian group is an abelian group with a Free module, basis. Being an abelian group means that it is a Set (mathematics), set with an addition operation (mathematics), operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group (mathematics), group can be uniquely expressed as an integer linear combination, combination of finitely many basis elements. For instance, the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1, 0) and (0, 1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free the free modules over the integers. Lattice (group), Lattice theory studies free abelian subgroups of real number, real vector spaces. In algebraic topology, free abelian groups are used to define Chain (algebraic topology), chain gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CW Complex
In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called ''cells'') of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. (open access) CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex). The C in CW stands for "closure-finite", and the W for "weak" topology. Definition CW complex A CW complex is constructed by taking the union of a sequence of topological spaces \emptyset = X_ \subset X_0 \subset X_1 \subset \cdots such that each X_k is obtained from X_ by gluing copies of k-cells (e^k_\alpha)_\alpha, each homeomorphic to the open k- bal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |