Formal Sum , a sum of infinitely many monomials with distinct positive integer exponents, again considered as an abstract object regardless ...
In mathematics, a formal sum, formal series, or formal linear combination may be: *In group theory, an element of a free abelian group, a sum of finitely many elements from a given basis set multiplied by integer coefficients. *In linear algebra, an element of a vector space, a sum of finitely many elements from a given basis set multiplied by real, complex, or other numerical coefficients. *In the study of series (mathematics), a sum of an infinite sequence of numbers or other quantities, considered as an abstract mathematical object regardless of whether the sum converges. *In the study of power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Abelian Group
In mathematics, a free abelian group is an abelian group with a Free module, basis. Being an abelian group means that it is a Set (mathematics), set with an addition operation (mathematics), operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group (mathematics), group can be uniquely expressed as an integer linear combination, combination of finitely many basis elements. For instance, the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1, 0) and (0, 1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free the free modules over the integers. Lattice (group), Lattice theory studies free abelian subgroups of real number, real vector spaces. In algebraic topology, free abelian groups are used to define Chain (algebraic topology), chain gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called scalar (mathematics), ''scalars''. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field (mathematics), field. Vector spaces generalize Euclidean vectors, which allow modeling of Physical quantity, physical quantities (such as forces and velocity) that have not only a Magnitude (mathematics), magnitude, but also a Orientation (geometry), direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix (mathematics), matrices, which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Series (mathematics)
In mathematics, a series is, roughly speaking, an addition of Infinity, infinitely many Addition#Terms, terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance. Among the Ancient Greece, Ancient Greeks, the idea that a potential infinity, potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the Quadrature of the Parabola, quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |