HOME





Ramanujan Theta Function
In mathematics, particularly q-analog, -analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa Ramanujan. Definition The Ramanujan theta function is defined as :f(a,b) = \sum_^\infty a^\frac \; b^\frac for . The Jacobi triple product identity then takes the form :f(a,b) = (-a; ab)_\infty \;(-b; ab)_\infty \;(ab;ab)_\infty. Here, the expression (a;q)_n denotes the q-Pochhammer symbol, -Pochhammer symbol. Identities that follow from this include :\varphi(q) = f(q,q) = \sum_^\infty q^ = and :\psi(q) = f\left(q,q^3\right) = \sum_^\infty q^\frac = and :f(-q) = f\left(-q,-q^2\right) = \sum_^\infty (-1)^n q^\frac = (q;q)_\infty This last being the Euler function, which is closely related to the Dedekind eta funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mock Theta Function
In mathematics, a mock modular form is the Holomorphic function, holomorphic part of a harmonic weak Maass wave form, Maass form, and a mock theta function is essentially a mock modular form of weight . The first examples of mock theta functions were described by Srinivasa Ramanujan in his last 1920 letter to G. H. Hardy and in his Ramanujan's lost notebook, lost notebook. Sander Zwegers discovered that adding certain non-holomorphic functions to them turns them into harmonic weak Maass forms. History Ramanujan's 12 January 1920 letter to Hardy listed 17 examples of functions that he called mock theta functions, and his lost notebook contained several more examples. (Ramanujan used the term "theta function" for what today would be called a modular form.) Ramanujan pointed out that they have an asymptotic expansion at the cusps, similar to that of modular forms of weight , possibly with poles at cusps, but cannot be expressed in terms of "ordinary" theta functions. He called funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theta Function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. Theta functions are parametrized by points in a tube domain inside a complex Lagrangian Grassmannian, namely the Siegel upper half space. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Functions
In the mathematical field of complex analysis, elliptic functions are special kinds of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Those integrals are in turn named elliptic because they first were encountered for the calculation of the arc length of an ellipse. Important elliptic functions are Jacobi elliptic functions and the Weierstrass \wp-function. Further development of this theory led to hyperelliptic functions and modular forms. Definition A meromorphic function is called an elliptic function, if there are two \mathbb- linear independent complex numbers \omega_1,\omega_2\in\mathbb such that : f(z + \omega_1) = f(z) and f(z + \omega_2) = f(z), \quad \forall z\in\mathbb. So elliptic functions have two periods and are therefore doubly periodic functions. Period lattice and fundamental domain If f is an elliptic function with periods \omega_1,\omega_2 it also holds ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-analogs
In mathematics, a ''q''-analog of a theorem, identity or expression is a generalization involving a new parameter ''q'' that returns the original theorem, identity or expression in the limit as . Typically, mathematicians are interested in ''q''-analogs that arise naturally, rather than in arbitrarily contriving ''q''-analogs of known results. The earliest ''q''-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. ''q''-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit is often formal, as is often discrete-valued (for example, it may represent a prime power). ''q''-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic dynamical systems. The relationship to fractals and dynamical systems results from the fact that many fractal patterns have the symme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

M-theory
In physics, M-theory is a theory that unifies all Consistency, consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory (physics), field theory called eleven-dimensional supergravity. Although a complete formulation o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superstring Theory
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity. Since the second superstring revolution, the five superstring theories ( Type I, Type IIA, Type IIB, HO and HE) are regarded as different limits of a single theory tentatively called M-theory. Background One of the deepest open problems in theoretical physics is formulating a theory of quantum gravity. Such a theory incorporates both the theory of general relativity, which describes gravitation and applies to large-scale structures, and quantum mechanics or more specifically quantum field theory, which describes the other three fundamental forces that act on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bosonic String Theory
Bosonic string theory is the original version of string theory, developed in the late 1960s. It is so called because it contains only bosons in the spectrum. In the 1980s, supersymmetry was discovered in the context of string theory, and a new version of string theory called superstring theory (supersymmetric string theory) became the real focus. Nevertheless, bosonic string theory remains a very useful model to understand many general features of perturbative string theory, and many theoretical difficulties of superstrings can actually already be found in the context of bosonic strings. Problems Although bosonic string theory has many attractive features, it falls short as a viable physical model in two significant areas. First, it predicts only the existence of bosons whereas many physical particles are fermions. Second, it predicts the existence of a mode of the string with imaginary mass, implying that the theory has an instability to a process known as "tachyon conde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Critical Dimension
In the renormalization group analysis of phase transitions in physics, a critical dimension is the dimensionality of space at which the character of the phase transition changes. Below the lower critical dimension there is no phase transition. Above the upper critical dimension the critical exponents of the theory become the same as that in mean field theory. An elegant criterion to obtain the critical dimension within mean field theory is due to V. Ginzburg. Since the renormalization group sets up a relation between a phase transition and a quantum field theory, this has implications for the latter and for our larger understanding of renormalization in general. Above the upper critical dimension, the quantum field theory which belongs to the model of the phase transition is a free field theory. Below the lower critical dimension, there is no field theory corresponding to the model. In the context of string theory the meaning is more restricted: the ''critical dimension'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi Theta Functions (notational Variations)
There are a number of notational systems for the Jacobi theta functions. The notations given in the Wikipedia article define the original function : \vartheta_(z; \tau) = \sum_^\infty \exp (\pi i n^2 \tau + 2 \pi i n z) which is equivalent to : \vartheta_(w, q) = \sum_^\infty q^ w^ where q=e^ and w=e^. However, a similar notation is defined somewhat differently in Whittaker and Watson, p. 487: : \vartheta_(x) = \sum_^\infty q^ \exp (2 \pi i n x/a) This notation is attributed to "Hermite, H.J.S. Smith and some other mathematicians". They also define : \vartheta_(x) = \sum_^\infty (-1)^n q^ \exp (\pi i (2 n + 1) x/a) This is a factor of ''i'' off from the definition of \vartheta_ as defined in the Wikipedia article. These definitions can be made at least proportional by ''x'' = ''za'', but other definitions cannot. Whittaker and Watson, Abramowitz and Stegun, and Gradshteyn and Ryzhik all follow Tannery and Molk, in which : \vartheta_1(z) = -i \sum_^\infty (-1)^n q^ \exp ((2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dedekind Eta Function
In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory. Definition For any complex number with , let ; then the eta function is defined by, :\eta(\tau) = e^\frac \prod_^\infty \left(1-e^\right) = q^\frac \prod_^\infty \left(1 - q^n\right) . Raising the eta equation to the 24th power and multiplying by gives :\Delta(\tau)=(2\pi)^\eta^(\tau) where is the modular discriminant. The presence of 24 can be understood by connection with other occurrences, such as in the 24-dimensional Leech lattice. The eta function is holomorphic on the upper half-plane but cannot be continued analytically beyond it. The eta function satisfies the functional equations :\begin \eta(\tau+1) &=e^\frac\eta(\tau),\\ \eta\left(-\frac\right) &= \sqrt\, \eta(\tau).\, \end In the second equation the b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Function
In mathematics, the Euler function is given by :\phi(q)=\prod_^\infty (1-q^k),\quad , q, <1. Named after Leonhard Euler, it is a model example of a q-series, ''q''-series and provides the prototypical example of a relation between combinatorics and complex analysis.


Properties

The coefficient p(k) in the formal power series expansion for 1/\phi(q) gives the number of Partition of an integer, partitions of ''k''. That is, :\frac=\sum_^\infty p(k) q^k where p is the Partition function (number theory), partition function. The Euler identity, also known as the Pentagonal number theorem, is :\phi(q)=\sum_^\infty (-1)^n q^. (3n^2-n)/2 is a pentagonal number. The Euler function is related to the Dedekind eta function as :\phi (e^)= e^ \eta(\tau). The Euler function may be expressed as a q-Pochhammer symbol, ''q''-Pochhammer symbol: :\phi(q) = (q;q)_. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]