HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, M-theory is a theory that unifies all
consistent In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences ...
versions of
superstring theory Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string t ...
.
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
first conjectured the existence of such a theory at a
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
conference at the
University of Southern California The University of Southern California (USC, SC, or Southern Cal) is a Private university, private research university in Los Angeles, California, United States. Founded in 1880 by Robert M. Widney, it is the oldest private research university in ...
in 1995. Witten's announcement initiated a flurry of research activity known as the
second superstring revolution The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum ...
. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many
physicists A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called
S-duality In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theore ...
and
T-duality T-duality (short for target-space duality) in theoretical physics is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories descr ...
. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity. Although a complete formulation of M-theory is not known, such a formulation should describe two- and five-dimensional objects called branes and should be approximated by eleven-dimensional supergravity at low energies. Modern attempts to formulate M-theory are typically based on
matrix theory In mathematics, a matrix (: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object. ...
or the
AdS/CFT correspondence In theoretical physics, the anti-de Sitter/conformal field theory correspondence (frequently abbreviated as AdS/CFT) is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) that are used ...
. According to Witten, M should stand for "magic", "mystery" or "membrane" according to taste, and the true meaning of the title should be decided when a more fundamental formulation of the theory is known.Duff 1996, sec. 1 Investigations of the mathematical structure of M-theory have spawned important theoretical results in physics and mathematics. More speculatively, M-theory may provide a framework for developing a unified theory of all of the
fundamental force In physics, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist: * gravity * electromagnetism * weak int ...
s of nature. Attempts to connect M-theory to experiment typically focus on compactifying its
extra dimension In physics, extra dimensions or extra-dimensional spaces are proposed as additional space or time dimensions beyond the (3 + 1) typical of observed spacetime — meaning 5-dimensional or higher. such as the first attempts based on the Ka ...
s to construct candidate models of the four-dimensional world, although so far none have been verified to give rise to physics as observed in
high-energy physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the stu ...
experiments.


Background


Quantum gravity and strings

One of the deepest problems in modern physics is the problem of
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
. The current understanding of
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
is based on
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
's
general theory of relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physi ...
, which is formulated within the framework of
classical physics Classical physics refers to physics theories that are non-quantum or both non-quantum and non-relativistic, depending on the context. In historical discussions, ''classical physics'' refers to pre-1900 physics, while '' modern physics'' refers to ...
. However, nongravitational forces are described within the framework of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, a radically different formalism for describing physical phenomena based on
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
. A quantum theory of gravity is needed in order to reconcile general relativity with the principles of quantum mechanics, but difficulties arise when one attempts to apply the usual prescriptions of quantum theory to the force of gravity.
String theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
is a theoretical framework that attempts to reconcile gravity and quantum mechanics. In string theory, the point-like particles of
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
are replaced by one-dimensional objects called strings. String theory describes how strings propagate through space and interact with each other. In a given version of string theory, there is only one kind of string, which may look like a small loop or segment of ordinary string, and it can vibrate in different ways. On distance scales larger than the string scale, a string will look just like an ordinary particle, with its
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
,
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
, and other properties determined by the vibrational state of the string. In this way, all of the different elementary particles may be viewed as vibrating strings. One of the vibrational states of a string gives rise to the
graviton In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with re ...
, a quantum mechanical particle that carries gravitational force. There are several versions of string theory: type I, type IIA, type IIB, and two flavors of
heterotic string In string theory, a heterotic string is a closed string (or loop) which is a hybrid ('heterotic') of a superstring and a bosonic string. There are two kinds of heterotic superstring theories, the heterotic SO(32) and the heterotic E8 ×&nbs ...
theory ( and ). The different theories allow different types of strings, and the particles that arise at low energies exhibit different
symmetries Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
. For example, the type I theory includes both open strings (which are segments with endpoints) and closed strings (which form closed loops), while types IIA and IIB include only closed strings. Each of these five string theories arises as a special limiting case of M-theory. This theory, like its string theory predecessors, is an example of a quantum theory of gravity. It describes a
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
just like the familiar gravitational force subject to the rules of quantum mechanics.Becker, Becker, and Schwarz 2007, p. 12


Number of dimensions

In everyday life, there are three familiar dimensions of space: height, width and depth. Einstein's general theory of relativity treats time as a dimension on par with the three spatial dimensions; in general relativity, space and time are not modeled as separate entities but are instead unified to a four-dimensional
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
, three spatial dimensions and one time dimension. In this framework, the phenomenon of gravity is viewed as a consequence of the geometry of spacetime. In spite of the fact that the universe is well described by four-dimensional spacetime, there are several reasons why physicists consider theories in other dimensions. In some cases, by modeling spacetime in a different number of dimensions, a theory becomes more mathematically tractable, and one can perform calculations and gain general insights more easily. There are also situations where theories in two or three spacetime dimensions are useful for describing phenomena in
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
. Finally, there exist scenarios in which there could actually be more than four dimensions of spacetime which have nonetheless managed to escape detection. One notable feature of string theory and M-theory is that these theories require
extra dimensions In physics, extra dimensions or extra-dimensional spaces are proposed as additional space or time dimensions beyond the (3 + 1) typical of observed spacetime — meaning 5-dimensional or higher. such as the first attempts based on the K ...
of spacetime for their mathematical consistency. In string theory, spacetime is ''ten-dimensional'' (nine spatial dimensions, and one time dimension), while in M-theory it is ''eleven-dimensional'' (ten spatial dimensions, and one time dimension). In order to describe real physical phenomena using these theories, one must therefore imagine scenarios in which these extra dimensions would not be observed in experiments. Compactification is one way of modifying the number of dimensions in a physical theory. In compactification, some of the extra dimensions are assumed to "close up" on themselves to form circles.Yau and Nadis 2010, Ch. 6 In the limit where these curled-up dimensions become very small, one obtains a theory in which spacetime has effectively a lower number of dimensions. A standard analogy for this is to consider a multidimensional object such as a garden hose. If the hose is viewed from a sufficient distance, it appears to have only one dimension, its length. However, as one approaches the hose, one discovers that it contains a second dimension, its circumference. Thus, an ant crawling on the surface of the hose would move in two dimensions.


Dualities

Theories that arise as different limits of M-theory turn out to be related in highly nontrivial ways. One of the relationships that can exist between these different physical theories is called
S-duality In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theore ...
. This is a relationship which says that a collection of strongly interacting particles in one theory can, in some cases, be viewed as a collection of weakly interacting particles in a completely different theory. Roughly speaking, a collection of particles is said to be strongly interacting if they combine and decay often and weakly interacting if they do so infrequently. Type I string theory turns out to be equivalent by S-duality to the heterotic string theory. Similarly, type IIB string theory is related to itself in a nontrivial way by S-duality.Becker, Becker, and Schwarz 2007 Another relationship between different string theories is
T-duality T-duality (short for target-space duality) in theoretical physics is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories descr ...
. Here one considers strings propagating around a circular extra dimension. T-duality states that a string propagating around a circle of radius is equivalent to a string propagating around a circle of radius in the sense that all observable quantities in one description are identified with quantities in the dual description. For example, a string has
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
as it propagates around a circle, and it can also wind around the circle one or more times. The number of times the string winds around a circle is called the
winding number In mathematics, the winding number or winding index of a closed curve in the plane (mathematics), plane around a given point (mathematics), point is an integer representing the total number of times that the curve travels counterclockwise aroun ...
. If a string has momentum and winding number in one description, it will have momentum and winding number in the dual description. For example, type IIA string theory is equivalent to type IIB string theory via T-duality, and the two versions of heterotic string theory are also related by T-duality. In general, the term '' duality'' refers to a situation where two seemingly different
physical system A physical system is a collection of physical objects under study. The collection differs from a set: all the objects must coexist and have some physical relationship. In other words, it is a portion of the physical universe chosen for analys ...
s turn out to be equivalent in a nontrivial way. If two theories are related by a duality, it means that one theory can be transformed in some way so that it ends up looking just like the other theory. The two theories are then said to be ''dual'' to one another under the transformation. Put differently, the two theories are mathematically different descriptions of the same phenomena.


Supersymmetry

Another important theoretical idea that plays a role in M-theory is
supersymmetry Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
. This is a mathematical relation that exists in certain physical theories between a class of particles called
bosons In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-integer ...
and a class of particles called
fermions In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin ( spin , spin , etc.) and obey the Pauli exclusion principle. These particles include all quarks and leptons and ...
. Roughly speaking, fermions are the constituents of matter, while bosons mediate interactions between particles. In theories with supersymmetry, each boson has a counterpart which is a fermion, and vice versa. When supersymmetry is imposed as a local symmetry, one automatically obtains a quantum mechanical theory that includes gravity. Such a theory is called a supergravity theory.Duff 1998, p. 64 A theory of strings that incorporates the idea of supersymmetry is called a
superstring theory Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string t ...
. There are several different versions of superstring theory which are all subsumed within the M-theory framework. At low energies, superstring theories are approximated by one of the three supergravities in ten dimensions, known as type I, type IIA, and type IIB supergravity. Similarly, M-theory is approximated at low energies by supergravity in eleven dimensions.


Branes

In string theory and related theories such as supergravity theories, a
brane In string theory and related theories (such as supergravity), a brane is a physical object that generalizes the notion of a zero-dimensional point particle, a one-dimensional string, or a two-dimensional membrane to higher-dimensional objec ...
is a physical object that generalizes the notion of a point particle to higher dimensions. For example, a point particle can be viewed as a brane of dimension zero, while a string can be viewed as a brane of dimension one. It is also possible to consider higher-dimensional branes. In dimension , these are called -branes. Branes are dynamical objects which can propagate through spacetime according to the rules of quantum mechanics. They can have mass and other attributes such as charge. A -brane sweeps out a -dimensional volume in spacetime called its ''worldvolume''. Physicists often study
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
analogous to the
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
which live on the worldvolume of a brane. The word brane comes from the word "membrane" which refers to a two-dimensional brane. In string theory, the fundamental objects that give rise to elementary particles are the one-dimensional strings. Although the physical phenomena described by M-theory are still poorly understood, physicists know that the theory describes two- and five-dimensional branes. Much of the current research in M-theory attempts to better understand the properties of these branes.


History and development


Kaluza–Klein theory

In the early 20th century, physicists and mathematicians including Albert Einstein and
Hermann Minkowski Hermann Minkowski (22 June 1864 – 12 January 1909) was a mathematician and professor at the University of Königsberg, the University of Zürich, and the University of Göttingen, described variously as German, Polish, Lithuanian-German, o ...
pioneered the use of four-dimensional geometry for describing the physical world. These efforts culminated in the formulation of Einstein's general theory of relativity, which relates gravity to the geometry of four-dimensional spacetime.Yau and Nadis 2010, p. 10 The success of general relativity led to efforts to apply higher dimensional geometry to explain other forces. In 1919, work by Theodor Kaluza showed that by passing to five-dimensional spacetime, one can unify gravity and
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
into a single force. This idea was improved by physicist
Oskar Klein Oskar Benjamin Klein (; 15 September 1894 – 5 February 1977) was a Swedish theoretical physics, theoretical physicist. Oskar Klein is known for his work on Kaluza–Klein theory, which is partially named after him. Biography Klein was born ...
, who suggested that the additional dimension proposed by Kaluza could take the form of a circle with radius around cm. The
Kaluza–Klein theory In physics, Kaluza–Klein theory (KK theory) is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to ...
and subsequent attempts by Einstein to develop
unified field theory In physics, a Unified Field Theory (UFT) or “Theory of Everything” is a type of field theory that allows all fundamental forces of nature, including gravity, and all elementary particles to be written in terms of a single physical field. Ac ...
were never completely successful. In part this was because Kaluza–Klein theory predicted a particle (the radion), that has never been shown to exist, and in part because it was unable to correctly predict the ratio of an electron's mass to its charge. In addition, these theories were being developed just as other physicists were beginning to discover quantum mechanics, which would ultimately prove successful in describing known forces such as electromagnetism, as well as new
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both ...
s that were being discovered throughout the middle part of the century. Thus it would take almost fifty years for the idea of new dimensions to be taken seriously again.


Early work on supergravity

New concepts and mathematical tools provided fresh insights into general relativity, giving rise to a period in the 1960s–1970s now known as the golden age of general relativity. In the mid-1970s, physicists began studying higher-dimensional theories combining general relativity with supersymmetry, the so-called supergravity theories. General relativity does not place any limits on the possible dimensions of spacetime. Although the theory is typically formulated in four dimensions, one can write down the same equations for the gravitational field in any number of dimensions. Supergravity is more restrictive because it places an upper limit on the number of dimensions. In 1978, work by
Werner Nahm Werner Nahm (; born 21 March 1949) is a German theoretical physicist. He has made contributions to mathematical physics and fundamental theoretical physics. Life and work Werner Nahm attended Gymnasium Philippinum Weilburg. After high sch ...
showed that the maximum spacetime dimension in which one can formulate a consistent supersymmetric theory is eleven. In the same year, Eugène Cremmer, Bernard Julia, and Joël Scherk of the
École Normale Supérieure École or Ecole may refer to: * an elementary school in the French educational stages normally followed by Secondary education in France, secondary education establishments (collège and lycée) * École (river), a tributary of the Seine flowing i ...
showed that supergravity not only permits up to eleven dimensions but is in fact most elegant in this maximal number of dimensions.Duff 1998, p. 65 Initially, many physicists hoped that by compactifying eleven-dimensional supergravity, it might be possible to construct realistic models of our four-dimensional world. The hope was that such models would provide a unified description of the four fundamental forces of nature: electromagnetism, the
strong Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United ...
and weak nuclear forces, and gravity. Interest in eleven-dimensional supergravity soon waned as various flaws in this scheme were discovered. One of the problems was that the laws of physics appear to distinguish between clockwise and counterclockwise, a phenomenon known as
chirality Chirality () is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable fro ...
.
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
and others observed this chirality property cannot be readily derived by compactifying from eleven dimensions. In the first superstring revolution in 1984, many physicists turned to string theory as a unified theory of particle physics and quantum gravity. Unlike supergravity theory, string theory was able to accommodate the chirality of the standard model, and it provided a theory of gravity consistent with quantum effects. Another feature of string theory that many physicists were drawn to in the 1980s and 1990s was its high degree of uniqueness. In ordinary particle theories, one can consider any collection of elementary particles whose classical behavior is described by an arbitrary Lagrangian. In string theory, the possibilities are much more constrained: by the 1990s, physicists had argued that there were only five consistent supersymmetric versions of the theory.


Relationships between string theories

Although there were only a handful of consistent superstring theories, it remained a mystery why there was not just one consistent formulation. However, as physicists began to examine string theory more closely, they realized that these theories are related in intricate and nontrivial ways. In the late 1970s, Claus Montonen and David Olive had conjectured a special property of certain physical theories. A sharpened version of their conjecture concerns a theory called supersymmetric Yang–Mills theory, which describes theoretical particles formally similar to the
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s and
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
s that make up
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
. The strength with which the particles of this theory interact is measured by a number called the
coupling constant In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between tw ...
. The result of Montonen and Olive, now known as
Montonen–Olive duality Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality or S-duality according to current terminology. It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that magn ...
, states that supersymmetric Yang–Mills theory with coupling constant is equivalent to the same theory with coupling constant . In other words, a system of strongly interacting particles (large coupling constant) has an equivalent description as a system of weakly interacting particles (small coupling constant) and vice versaDuff 1998, p. 66 by spin-moment. In the 1990s, several theorists generalized Montonen–Olive duality to the S-duality relationship, which connects different string theories.
Ashoke Sen Ashoke Sen FRS (; born 1956) is an Indian theoretical physicist and distinguished professor at the International Centre for Theoretical Sciences (ICTS), Bangalore. A former distinguished professor at the Harish-Chandra Research Institute, Pra ...
studied S-duality in the context of heterotic strings in four dimensions.
Chris Hull Christopher Michael Hull (born 1957) One or more of the preceding sentences incorporates text from the royalsociety.org website where: is a professor of theoretical physics at Imperial College London. Hull is known for his work on string theory, ...
and Paul Townsend showed that type IIB string theory with a large coupling constant is equivalent via S-duality to the same theory with small coupling constant. Theorists also found that different string theories may be related by T-duality. This duality implies that strings propagating on completely different spacetime geometries may be physically equivalent.Duff 1998, p. 67


Membranes and fivebranes

String theory extends ordinary particle physics by replacing zero-dimensional point particles by one-dimensional objects called strings. In the late 1980s, it was natural for theorists to attempt to formulate other extensions in which particles are replaced by two-dimensional supermembranes or by higher-dimensional objects called branes. Such objects had been considered as early as 1962 by
Paul Dirac Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
, and they were reconsidered by a small but enthusiastic group of physicists in the 1980s. Supersymmetry severely restricts the possible number of dimensions of a brane. In 1987, Eric Bergshoeff, Ergin Sezgin, and Paul Townsend showed that eleven-dimensional supergravity includes two-dimensional branes. Intuitively, these objects look like sheets or membranes propagating through the eleven-dimensional spacetime. Shortly after this discovery, Michael Duff, Paul Howe, Takeo Inami, and Kellogg Stelle considered a particular compactification of eleven-dimensional supergravity with one of the dimensions curled up into a circle. In this setting, one can imagine the membrane wrapping around the circular dimension. If the radius of the circle is sufficiently small, then this membrane looks just like a string in ten-dimensional spacetime. In fact, Duff and his collaborators showed that this construction reproduces exactly the strings appearing in type IIA superstring theory. In 1990,
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
published a similar result which suggested that strongly interacting strings in ten dimensions might have an equivalent description in terms of weakly interacting five-dimensional branes. Initially, physicists were unable to prove this relationship for two important reasons. On the one hand, the Montonen–Olive duality was still unproven, and so Strominger's conjecture was even more tenuous. On the other hand, there were many technical issues related to the quantum properties of five-dimensional branes. The first of these problems was solved in 1993 when
Ashoke Sen Ashoke Sen FRS (; born 1956) is an Indian theoretical physicist and distinguished professor at the International Centre for Theoretical Sciences (ICTS), Bangalore. A former distinguished professor at the Harish-Chandra Research Institute, Pra ...
established that certain physical theories require the existence of objects with both
electric Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
magnetic Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
charge which were predicted by the work of Montonen and Olive. In spite of this progress, the relationship between strings and five-dimensional branes remained conjectural because theorists were unable to quantize the branes. Starting in 1991, a team of researchers including Michael Duff, Ramzi Khuri, Jianxin Lu, and Ruben Minasian considered a special compactification of string theory in which four of the ten dimensions curl up. If one considers a five-dimensional brane wrapped around these extra dimensions, then the brane looks just like a one-dimensional string. In this way, the conjectured relationship between strings and branes was reduced to a relationship between strings and strings, and the latter could be tested using already established theoretical techniques.


Second superstring revolution

Speaking at Strings '95 at the
University of Southern California The University of Southern California (USC, SC, or Southern Cal) is a Private university, private research university in Los Angeles, California, United States. Founded in 1880 by Robert M. Widney, it is the oldest private research university in ...
in 1995, Edward Witten of the
Institute for Advanced Study The Institute for Advanced Study (IAS) is an independent center for theoretical research and intellectual inquiry located in Princeton, New Jersey. It has served as the academic home of internationally preeminent scholars, including Albert Ein ...
made the surprising suggestion that all five superstring theories were in fact just different limiting cases of a single theory in eleven spacetime dimensions. Witten's announcement drew together all of the previous results on S- and T-duality and the appearance of two- and five-dimensional branes in string theory. In the months following Witten's announcement, hundreds of new papers appeared on the Internet confirming that the new theory involved membranes in an important way. Today this flurry of work is known as the
second superstring revolution The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum ...
. One of the important developments following Witten's announcement was Witten's work in 1996 with string theorist Petr Hořava.Hořava and Witten 1996a Witten and Hořava studied M-theory on a special spacetime geometry with two ten-dimensional boundary components. Their work shed light on the mathematical structure of M-theory and suggested possible ways of connecting M-theory to real world physics.


Origin of the term

Initially, some physicists suggested that the new theory was a fundamental theory of membranes, but Witten was skeptical of the role of membranes in the theory. In a paper from 1996, Hořava and Witten wrote In the absence of an understanding of the true meaning and structure of M-theory, Witten has suggested that the ''M'' should stand for "magic", "mystery", or "membrane" according to taste, and the true meaning of the title should be decided when a more fundamental formulation of the theory is known. Years later, he would state, "I thought my colleagues would understand that it really stood for membrane. Unfortunately, it got people confused."


Matrix theory


BFSS matrix model

In mathematics, a
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
is a rectangular array of numbers or other data. In physics, a matrix model is a particular kind of physical theory whose mathematical formulation involves the notion of a matrix in an important way. A matrix model describes the behavior of a set of matrices within the framework of quantum mechanics.Banks et al. 1997Connes, Douglas, and Schwarz 1998 One important example of a matrix model is the BFSS matrix model proposed by Tom Banks, Willy Fischler, Stephen Shenker, and
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birth anniversary was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an Americ ...
in 1997. This theory describes the behavior of a set of nine large matrices. In their original paper, these authors showed, among other things, that the low energy limit of this matrix model is described by eleven-dimensional supergravity. These calculations led them to propose that the BFSS matrix model is exactly equivalent to M-theory. The BFSS matrix model can therefore be used as a prototype for a correct formulation of M-theory and a tool for investigating the properties of M-theory in a relatively simple setting.


Noncommutative geometry

In geometry, it is often useful to introduce
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the Position (geometry), position of the Point (geometry), points or other geometric elements on a manifold such as ...
. For example, in order to study the geometry of the
Euclidean plane In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
, one defines the coordinates and as the distances between any point in the plane and a pair of
axes Axes, plural of ''axe'' and of ''axis'', may refer to * ''Axes'' (album), a 2005 rock album by the British band Electrelane * a possibly still empty plot (graphics) See also * Axis (disambiguation) An axis (: axes) may refer to: Mathematics ...
. In ordinary geometry, the coordinates of a point are numbers, so they can be multiplied, and the product of two coordinates does not depend on the order of multiplication. That is, . This property of multiplication is known as the
commutative law In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a p ...
, and this relationship between geometry and the
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theo ...
of coordinates is the starting point for much of modern geometry.
Noncommutative geometry Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions, possibly in some g ...
is a branch of mathematics that attempts to generalize this situation. Rather than working with ordinary numbers, one considers some similar objects, such as matrices, whose multiplication does not satisfy the commutative law (that is, objects for which is not necessarily equal to ). One imagines that these noncommuting objects are coordinates on some more general notion of "space" and proves theorems about these generalized spaces by exploiting the analogy with ordinary geometry. In a paper from 1998,
Alain Connes Alain Connes (; born 1 April 1947) is a French mathematician, known for his contributions to the study of operator algebras and noncommutative geometry. He was a professor at the , , Ohio State University and Vanderbilt University. He was awar ...
, Michael R. Douglas, and Albert Schwarz showed that some aspects of matrix models and M-theory are described by a noncommutative quantum field theory, a special kind of physical theory in which the coordinates on spacetime do not satisfy the commutativity property. This established a link between matrix models and M-theory on the one hand, and noncommutative geometry on the other hand. It quickly led to the discovery of other important links between noncommutative geometry and various physical theories.


AdS/CFT correspondence


Overview

The application of quantum mechanics to physical objects such as the electromagnetic field, which are extended in space and time, is known as
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
. In particle physics, quantum field theories form the basis for our understanding of elementary particles, which are modeled as excitations in the fundamental fields. Quantum field theories are also used throughout condensed matter physics to model particle-like objects called
quasiparticle In condensed matter physics, a quasiparticle is a concept used to describe a collective behavior of a group of particles that can be treated as if they were a single particle. Formally, quasiparticles and collective excitations are closely relate ...
s. One approach to formulating M-theory and studying its properties is provided by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. Proposed by Juan Maldacena in late 1997, the AdS/CFT correspondence is a theoretical result which implies that M-theory is in some cases equivalent to a quantum field theory. In addition to providing insights into the mathematical structure of string and M-theory, the AdS/CFT correspondence has shed light on many aspects of quantum field theory in regimes where traditional calculational techniques are ineffective. In the AdS/CFT correspondence, the geometry of spacetime is described in terms of a certain
vacuum solution In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or n ...
of
Einstein's equation In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Albert Einstein in 1915 in th ...
called
anti-de Sitter space In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a symmetric_space, maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are na ...
. In very elementary terms, anti-de Sitter space is a mathematical model of spacetime in which the notion of distance between points (the
metric Metric or metrical may refer to: Measuring * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics ...
) is different from the notion of distance in ordinary
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
. It is closely related to
hyperbolic space In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symme ...
, which can be viewed as a disk as illustrated on the left.Maldacena 2005, p. 60 This image shows a
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety ...
of a disk by triangles and squares. One can define the distance between points of this disk in such a way that all the triangles and squares are the same size and the circular outer boundary is infinitely far from any point in the interior.Maldacena 2005, p. 61 Now imagine a stack of hyperbolic disks where each disk represents the state of the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
at a given time. The resulting geometric object is three-dimensional anti-de Sitter space. It looks like a solid
cylinder A cylinder () has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infinite ...
in which any cross section is a copy of the hyperbolic disk. Time runs along the vertical direction in this picture. The surface of this cylinder plays an important role in the AdS/CFT correspondence. As with the hyperbolic plane, anti-de Sitter space is curved in such a way that any point in the interior is actually infinitely far from this boundary surface. This construction describes a hypothetical universe with only two space dimensions and one time dimension, but it can be generalized to any number of dimensions. Indeed, hyperbolic space can have more than two dimensions and one can "stack up" copies of hyperbolic space to get higher-dimensional models of anti-de Sitter space. An important feature of anti-de Sitter space is its boundary (which looks like a cylinder in the case of three-dimensional anti-de Sitter space). One property of this boundary is that, within a small region on the surface around any given point, it looks just like
Minkowski space In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model. The model helps show how a ...
, the model of spacetime used in nongravitational physics. One can therefore consider an auxiliary theory in which "spacetime" is given by the boundary of anti-de Sitter space. This observation is the starting point for AdS/CFT correspondence, which states that the boundary of anti-de Sitter space can be regarded as the "spacetime" for a quantum field theory. The claim is that this quantum field theory is equivalent to the gravitational theory on the bulk anti-de Sitter space in the sense that there is a "dictionary" for translating entities and calculations in one theory into their counterparts in the other theory. For example, a single particle in the gravitational theory might correspond to some collection of particles in the boundary theory. In addition, the predictions in the two theories are quantitatively identical so that if two particles have a 40 percent chance of colliding in the gravitational theory, then the corresponding collections in the boundary theory would also have a 40 percent chance of colliding.


6D (2,0) superconformal field theory

One particular realization of the AdS/CFT correspondence states that M-theory on the
product space In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemi ...
is equivalent to the so-called (2,0)-theory on the six-dimensional boundary.Maldacena 1998 Here "(2,0)" refers to the particular type of supersymmetry that appears in the theory. In this example, the spacetime of the gravitational theory is effectively seven-dimensional (hence the notation ), and there are four additional "
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
" dimensions (encoded by the factor). In the real world, spacetime is four-dimensional, at least macroscopically, so this version of the correspondence does not provide a realistic model of gravity. Likewise, the dual theory is not a viable model of any real-world system since it describes a world with six spacetime dimensions. Nevertheless, the (2,0)-theory has proven to be important for studying the general properties of quantum field theories. Indeed, this theory subsumes many mathematically interesting effective quantum field theories and points to new dualities relating these theories. For example, Luis Alday, Davide Gaiotto, and Yuji Tachikawa showed that by compactifying this theory on a
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
, one obtains a four-dimensional quantum field theory, and there is a duality known as the AGT correspondence which relates the physics of this theory to certain physical concepts associated with the surface itself. More recently, theorists have extended these ideas to study the theories obtained by compactifying down to three dimensions. In addition to its applications in quantum field theory, the (2,0)-theory has spawned important results in
pure mathematics Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications ...
. For example, the existence of the (2,0)-theory was used by Witten to give a "physical" explanation for a conjectural relationship in mathematics called the
geometric Langlands correspondence In mathematics, the geometric Langlands correspondence relates algebraic geometry and representation theory. It is a reformulation of the Langlands correspondence obtained by replacing the number fields appearing in the original number theoretic ...
. In subsequent work, Witten showed that the (2,0)-theory could be used to understand a concept in mathematics called
Khovanov homology In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial. It was developed in the late 1990s by Mikhail Khovanov. Overv ...
. Developed by Mikhail Khovanov around 2000, Khovanov homology provides a tool in
knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
, the branch of mathematics that studies and classifies the different shapes of knots. Another application of the (2,0)-theory in mathematics is the work of Davide Gaiotto, Greg Moore, and Andrew Neitzke, which used physical ideas to derive new results in hyperkähler geometry.


ABJM superconformal field theory

Another realization of the AdS/CFT correspondence states that M-theory on is equivalent to a quantum field theory called the ABJM theory in three dimensions. In this version of the correspondence, seven of the dimensions of M-theory are curled up, leaving four non-compact dimensions. Since the spacetime of our universe is four-dimensional, this version of the correspondence provides a somewhat more realistic description of gravity.Aharony et al. 2008 The ABJM theory appearing in this version of the correspondence is also interesting for a variety of reasons. Introduced by Aharony, Bergman, Jafferis, and Maldacena, it is closely related to another quantum field theory called
Chern–Simons theory The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who intr ...
. The latter theory was popularized by Witten in the late 1980s because of its applications to knot theory. In addition, the ABJM theory serves as a semi-realistic simplified model for solving problems that arise in condensed matter physics.


Phenomenology


Overview

In addition to being an idea of considerable theoretical interest, M-theory provides a framework for constructing models of real world physics that combine general relativity with the
standard model of particle physics The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It ...
.
Phenomenology Phenomenology may refer to: Art * Phenomenology (architecture), based on the experience of building materials and their sensory properties Philosophy * Phenomenology (Peirce), a branch of philosophy according to Charles Sanders Peirce (1839� ...
is the branch of theoretical physics in which physicists construct realistic models of nature from more abstract theoretical ideas. String phenomenology is the part of string theory that attempts to construct realistic models of particle physics based on string and M-theory. Typically, such models are based on the idea of compactification. Starting with the ten- or eleven-dimensional spacetime of string or M-theory, physicists postulate a shape for the extra dimensions. By choosing this shape appropriately, they can construct models roughly similar to the standard model of particle physics, together with additional undiscovered particles, usually supersymmetric partners to analogues of known particles. One popular way of deriving realistic physics from string theory is to start with the heterotic theory in ten dimensions and assume that the six extra dimensions of spacetime are shaped like a six-dimensional
Calabi–Yau manifold In algebraic and differential geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has certain properties, such as Ricci flatness, yielding applications in theoretical physics. P ...
. This is a special kind of geometric object named after mathematicians Eugenio Calabi and
Shing-Tung Yau Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and professor emeritus at Harvard University. Until 2022, Yau was the William Caspar ...
. Calabi–Yau manifolds offer many ways of extracting realistic physics from string theory. Other similar methods can be used to construct models with physics resembling to some extent that of our four-dimensional world based on M-theory. Partly because of theoretical and mathematical difficulties and partly because of the extremely high energies (beyond what is technologically possible for the foreseeable future) needed to test these theories experimentally, there is so far no experimental evidence that would unambiguously point to any of these models being a correct fundamental description of nature. This has led some in the community to criticize these approaches to unification and question the value of continued research on these problems.


Compactification on manifolds

In one approach to M-theory phenomenology, theorists assume that the seven extra dimensions of M-theory are shaped like a manifold. This is a special kind of seven-dimensional shape constructed by mathematician Dominic Joyce of the
University of Oxford The University of Oxford is a collegiate university, collegiate research university in Oxford, England. There is evidence of teaching as early as 1096, making it the oldest university in the English-speaking world and the List of oldest un ...
.Yau and Nadis 2010, p. 149 These manifolds are still poorly understood mathematically, and this fact has made it difficult for physicists to fully develop this approach to phenomenology.Yau and Nadis 2010, p. 150 For example, physicists and mathematicians often assume that space has a mathematical property called
smoothness In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; t ...
, but this property cannot be assumed in the case of a manifold if one wishes to recover the physics of our four-dimensional world. Another problem is that manifolds are not
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such th ...
s, so theorists are unable to use tools from the branch of mathematics known as
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
. Finally, there are many open questions about the existence, uniqueness, and other mathematical properties of manifolds, and mathematicians lack a systematic way of searching for these manifolds.


Heterotic M-theory

Because of the difficulties with manifolds, most attempts to construct realistic theories of physics based on M-theory have taken a more indirect approach to compactifying eleven-dimensional spacetime. One approach, pioneered by Witten, Hořava, Burt Ovrut, and others, is known as heterotic M-theory. In this approach, one imagines that one of the eleven dimensions of M-theory is shaped like a circle. If this circle is very small, then the spacetime becomes effectively ten-dimensional. One then assumes that six of the ten dimensions form a Calabi–Yau manifold. If this Calabi–Yau manifold is also taken to be small, one is left with a theory in four-dimensions. Heterotic M-theory has been used to construct models of
brane cosmology Brane cosmology refers to several theories in particle physics and cosmology related to string theory, superstring theory and M-theory. Brane and bulk The central idea is that the visible, four-dimensional spacetime is restricted to a brane i ...
in which the observable universe is thought to exist on a brane in a higher dimensional ambient space. It has also spawned alternative theories of the early universe that do not rely on the theory of
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
.


References


Notes


Citations


Bibliography

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *


Popularization


BBC ''Horizon'': "Parallel Universes"
nbsp;– 2002 feature documentary by BBC ''Horizon'', episode "Parallel Universes" focuses on the history and emergence of M-theory, and scientists involved

PBS.org-NOVA: ''The Elegant Universe''] – 2003
Emmy Award The Emmy Awards, or Emmys, are an extensive range of awards for artistic and technical merit for the television industry. A number of annual Emmy Award ceremonies are held throughout the year, each with their own set of rules and award categor ...
-winning, three-hour miniseries by ''Nova'' with
Brian Greene Brian Randolph Greene (born February 9, 1963) is an American physicist known for his research on string theory. He is a professor of physics and mathematics at Columbia University, director of its center for theoretical physics, and the cha ...
, adapted from his ''
The Elegant Universe ''The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory'' is a book by Brian Greene published in 1999, which introduces string and superstring theory, and provides a comprehensive though non-technical asses ...
'' book (original
PBS The Public Broadcasting Service (PBS) is an American public broadcaster and non-commercial, free-to-air television network based in Arlington, Virginia. PBS is a publicly funded nonprofit organization and the most prominent provider of educat ...
broadcast dates: October 28, 8–10 p.m. and November 4, 8–9 p.m., 2003)


See also

*
F-theory In theoretical physics, F-theory is a branch of string theory developed by Iranian-American physicist Cumrun Vafa. The new vacua described by F-theory were discovered by Vafa and allowed string theorists to construct new realistic vacua — in ...
*
Multiverse The multiverse is the hypothetical set of all universes. Together, these universes are presumed to comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describ ...


External links


Superstringtheory.com
nbsp;– The "Official String Theory Web Site", created by Patricia Schwarz. References on string theory and M-theory for the layperson and expert.
Not Even Wrong
nbsp;–
Peter Woit Peter Woit (; born September 11, 1957) is a Latvian-American mathematician who works in twistor theory. He works in the mathematics department at Columbia University. Woit, a critic of string theory, has published a book ''Not Even Wrong'' (2006 ...
's blog on physics in general, and string theory in particular.
M-Theory – Edward Witten (1995)
– Witten's 1995 lecture introducing M-Theory. {{Authority control String theory 1995 introductions