Compactification (physics)
In theoretical physics, compactification means changing a theory with respect to one of its Spacetime, space-time dimensions. Instead of having a theory with this dimension being infinite, one changes the theory so that this dimension has a finite length, and may also be Periodic function, periodic. Compactification plays an important part in Thermal quantum field theory, thermal field theory where one compactifies time, in string theory where one compactifies the String theory#Extra dimensions, extra dimensions of the theory, and in two- or one-dimensional Solid-state physics, solid state physics, where one considers a system which is limited in one of the three usual spatial dimensions. At the limit where the size of the compact dimension goes to zero, no fields depend on this extra dimension, and the theory is Dimensional reduction, dimensionally reduced. In string theory In string theory, compactification is a generalization of Kaluza–Klein theory.Dean Rickles (2014). '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert E ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dilaton
In particle physics, the hypothetical dilaton is a particle of a scalar field \varphi that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/''G'' is replaced by a scalar field \varphi and the associated particle is the dilaton. Exposition In Kaluza–Klein theories, after dimensional reduction, the effective Planck mass varies as some power of the volume of compactified space. This is why volume can turn out as a dilaton in the lower-dimensional effective theory. Although string theory naturally incorporates Kaluza–Klein theory that first introduced the dilaton, perturbative string theories such as type I string theory, type II string theory, and heterotic string theory already contain the dilaton in the maximal number of 10 di ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John H
John is a common English name and surname: * John (given name) * John (surname) John may also refer to: New Testament Works * Gospel of John, a title often shortened to John * First Epistle of John, often shortened to 1 John * Second Epistle of John, often shortened to 2 John * Third Epistle of John, often shortened to 3 John People * John the Baptist (died ), regarded as a prophet and the forerunner of Jesus Christ * John the Apostle (died ), one of the twelve apostles of Jesus Christ * John the Evangelist, assigned author of the Fourth Gospel, once identified with the Apostle * John of Patmos, also known as John the Divine or John the Revelator, the author of the Book of Revelation, once identified with the Apostle * John the Presbyter, a figure either identified with or distinguished from the Apostle, the Evangelist and John of Patmos Other people with the given name Religious figures * John, father of Andrew the Apostle and Saint Peter * Pope Joh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Michael Green (physicist)
Michael Boris Green (born 22 May 1946) is a British physicist and a pioneer of string theory. He is a professor of theoretical physics in the School of Physics and Astronomy at Queen Mary University of London, emeritus professor in the Department of Applied Mathematics and Theoretical Physics and a Fellow of Clare Hall, Cambridge. He was Lucasian Professor of Mathematics from 2009 to 2015. Early life and education Green was born the son of Genia Green and Absalom Green. He attended William Ellis School in London and Churchill College, Cambridge where he graduated with a Bachelor of Arts with first class honours in theoretical physics (1967) and a PhD in elementary particle theory (1970). Career Following his PhD, Green did postdoctoral research at Princeton University (1970–72), Cambridge and the University of Oxford. Between 1978 and 1993 he was a Lecturer and Professor at Queen Mary College, University of London, and in July 1993 he was appointed John Humphrey Plu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
D-brane
In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes are typically classified by their spatial dimension, which is indicated by a number written after the ''D.'' A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(−1)-branes, which are localized in both space and time. Discovery D-branes were discovered by Jin Dai, Robert Leigh, and Joseph Polchinski, and independently by Petr Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the second superstring revolution and led to both holographic and M-theory dualities. Theoretical background The equations of motion of string theory r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type II String Theory
In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theories have \mathcal=2 extended supersymmetry which is maximal amount of supersymmetry — namely 32 supercharges — in ten dimensions. Both theories are based on oriented closed strings. On the worldsheet, they differ only in the choice of GSO projection. They were first discovered by Michael Green and John Henry Schwarz in 1982, with the terminology of type I and type II coined to classify the three string theories known at the time. Type IIA string theory At low energies, type IIA string theory is described by type IIA supergravity in ten dimensions which is a non-chiral theory (i.e. left–right symmetric) with (1,1) ''d''=10 supersymmetry; the fact that the anomalies in this theory cancel is therefore trivial. In the 1990 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
F-theory
In theoretical physics, F-theory is a branch of string theory developed by Iranian-American physicist Cumrun Vafa. The new vacua described by F-theory were discovered by Vafa and allowed string theorists to construct new realistic vacua — in the form of F-theory compactified on elliptically fibered Calabi–Yau four-folds. The letter "F" supposedly stands for "Father" in relation to "Mother"-theory. Compactifications F-theory is formally a 12-dimensional theory, but the only way to obtain an acceptable background is to compactify this theory on a two-torus. By doing so, one obtains type IIB superstring theory in 10 dimensions. The SL(2,Z) S-duality symmetry of the resulting type IIB string theory is manifest because it arises as the group of large diffeomorphisms of the two-dimensional torus. More generally, one can compactify F-theory on an elliptically fibered manifold ( elliptic fibration), i.e. a fiber bundle whose fiber is a two-dimensional torus (also calle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
String Theory Landscape
In string theory, the string theory landscape (or landscape of vacua) is the collection of possible false vacua,The number of metastable vacua is not known exactly, but commonly quoted estimates are of the order 10500. See M. Douglas, "The statistics of string / M theory vacua", ''JHEP'' 0305, 46 (2003). ; S. Ashok and M. Douglas, "Counting flux vacua", ''JHEP'' 0401, 060 (2004). together comprising a collective "landscape" of choices of parameters governing compactifications. The term "landscape" comes from the notion of a fitness landscape in evolutionary biology. It was first applied to cosmology by Lee Smolin in his book '' The Life of the Cosmos'' (1997), and was first used in the context of string theory by Leonard Susskind. Compactified Calabi–Yau manifolds In string theory the number of flux vacua is commonly thought to be roughly 10^, but could be 10^ or higher. The large number of possibilities arises from choices of Calabi–Yau manifolds and choices of gen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P-form Electrodynamics
In theoretical physics, -form electrodynamics is a generalization of Maxwell's theory of electromagnetism. Ordinary (via. one-form) Abelian electrodynamics We have a 1-form \mathbf, a gauge symmetry :\mathbf \rightarrow \mathbf + d\alpha , where \alpha is any arbitrary fixed 0-form and d is the exterior derivative, and a gauge-invariant vector current \mathbf with density 1 satisfying the continuity equation :d\mathbf = 0 , where is the Hodge star operator. Alternatively, we may express \mathbf as a closed -form, but we do not consider that case here. \mathbf is a gauge-invariant 2-form defined as the exterior derivative \mathbf = d\mathbf. \mathbf satisfies the equation of motion :d\mathbf = \mathbf (this equation obviously implies the continuity equation). This can be derived from the action :S=\int_M \left frac\mathbf \wedge \mathbf - \mathbf \wedge \mathbf\right, where M is the spacetime manifold. ''p''-form Abelian electrodynamics We have a -form \mathbf, a gaug ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electromagnetic Field
An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field. Because of the interrelationship between the fields, a disturbance in the electric field can create a disturbance in the magnetic field which in turn affects the electric field, leading to an oscillation that propagates through space, known as an ''electromagnetic wave''. The way in which charges and currents (i.e. streams of charges) interact with the electromagnetic field is described by Maxwell's equations and the Lorentz force law. Maxwell's equations detail how the electric field converges towards or diverges away from electric charges, how the magnetic field curls around electrical currents, and how changes in the electric and magnetic fields influence each other. The Lor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression f(x) \, dx is an example of a -form, and can be integrated over an interval ,b/math> contained in the domain of f: \int_a^b f(x)\,dx. Similarly, the expression f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz is a -form that can be integrated over a surface S: \int_S \left(f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz\right). The symbol \wedge denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form f(x,y,z) \, dx \wedge dy \wedge dz represents a volume element that can be integrated over a region of space. In general, a -form is an object ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generalized Complex Structure
In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti. These structures first arose in Hitchin's program of characterizing geometrical structures via functionals of differential forms, a connection which formed the basis of Robbert Dijkgraaf, Sergei Gukov, Andrew Neitzke and Cumrun Vafa's 2004 proposal that topological string theories are special cases of a topological M-theory. Today generalized complex structures also play a leading role in physical string theory, as supersymmetric flux compactifications, which relate 10-dimensional physics to 4-dimensional worlds like ours, require (possibly twisted) generalized complex structures. Definition The generalized tangen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |