HOME





Quasisymmetric Function
In algebra and in particular in algebraic combinatorics, a quasisymmetric function is any element in the ring of quasisymmetric functions which is in turn a subring of the formal power series ring with a countable number of variables. This ring generalizes the ring of symmetric functions. This ring can be realized as a specific limit of the rings of quasisymmetric polynomials in ''n'' variables, as ''n'' goes to infinity. This ring serves as universal structure in which relations between quasisymmetric polynomials can be expressed in a way independent of the number ''n'' of variables (but its elements are neither polynomials nor functions). Definitions The ring of quasisymmetric functions, denoted QSym, can be defined over any commutative ring ''R'' such as the integers. Quasisymmetric functions are power series of bounded degree in variables x_1,x_2,x_3, \dots with coefficients in ''R'', which are shift invariant in the sense that the coefficient of the monomial x_1^x_2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homogeneous Polynomial
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial x^3 + 3 x^2 y + z^7 is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function. An algebraic form, or simply form, is a function defined by a homogeneous polynomial.However, as some authors do not make a clear distinction between a polynomial and its associated function, the terms ''homogeneous polynomial'' and ''form'' are sometimes considered as synonymous. A binary form is a form in two variables. A ''form'' is also a function defined on a vector space, which may be expressed as a homogeneous function of the coordinates over any basis. A polynomial of degree 0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem ( Magnes Press). History Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... was 0.754. External links * Mathematics journals Academic journals established in 1963 Academic journals of Israel English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Macdonald Polynomials
In mathematics, Macdonald polynomials ''P''λ(''x''; ''t'',''q'') are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable ''t'', but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable ''t'' can be replaced by several different variables ''t''=(''t''1,...,''tk''), one for each of the ''k'' orbits of roots in the affine root system. The Macdonald polynomials are polynomials in ''n'' variables ''x''=(''x''1,...,''xn''), where ''n'' is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named orthogona ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Algebraic Combinatorics
''Journal of Algebraic Combinatorics'' is a peer-reviewed scientific journal covering algebraic combinatorics. It was established in 1992 and is published by Springer Science+Business Media. The editor-in-chief is Ilias S. Kotsireas (Wilfrid Laurier University). In 2017, the journal's four editors-in-chief and editorial board resigned to protest the publisher's high prices and limited accessibility. They criticized Springer for "double-dipping", that is, charging large subscription fees to libraries in addition to high fees for authors who wished to make their publications open access. The board subsequently started their own open access journal, ''Algebraic Combinatorics''. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schubert Polynomial
In mathematics, Schubert polynomials are generalizations of Schur polynomials that represent cohomology classes of Schubert cycles in flag varieties. They were introduced by and are named after Hermann Schubert. Background described the history of Schubert polynomials. The Schubert polynomials \mathfrak_w are polynomials in the variables x_1,x_2,\ldots depending on an element w of the infinite symmetric group S_\infty of all permutations of \N fixing all but a finite number of elements. They form a basis for the polynomial ring \Z _1,x_2,\ldots/math> in infinitely many variables. The cohomology of the flag manifold \text(m) is \Z _1, x_2,\ldots, x_mI, where I is the ideal generated by homogeneous symmetric functions of positive degree. The Schubert polynomial \mathfrak_w is the unique homogeneous polynomial of degree \ell(w) representing the Schubert cycle of w in the cohomology of the flag manifold \text(m) for all sufficiently large m. Properties *If w_0 is the permutat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanley Symmetric Function
In mathematics and especially in algebraic combinatorics, the Stanley symmetric functions are a family of symmetric functions introduced by in his study of the symmetric group of permutations. Formally, the Stanley symmetric function ''F''''w''(''x''1, ''x''2, ...) indexed by a permutation ''w'' is defined as a sum of certain fundamental quasisymmetric functions. Each summand corresponds to a reduced decomposition of ''w'', that is, to a way of writing ''w'' as a product of a minimal possible number of adjacent transpositions. They were introduced in the course of Stanley's enumeration of the reduced decompositions of permutations, and in particular his proof that the permutation ''w''0 = ''n''(''n'' − 1)...21 (written here in one-line notation) has exactly : \frac reduced decompositions. (Here \binom denotes the binomial coefficient ''n''(''n'' − 1)/2 and ! denotes the factorial.) Properties The Stanley symmetric function ''F''''w'' is homogeneous with degree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enumerative Combinatorics
Enumerative combinatorics is an area of combinatorics that deals with the number of ways that certain patterns can be formed. Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets ''S''''i'' indexed by the natural numbers, enumerative combinatorics seeks to describe a ''counting function'' which counts the number of objects in ''S''''n'' for each ''n''. Although counting the number of elements in a set is a rather broad mathematical problem, many of the problems that arise in applications have a relatively simple combinatorial description. The twelvefold way provides a unified framework for counting permutations, combinations and partitions. The simplest such functions are '' closed formulas'', which can be expressed as a composition of elementary functions such as factorials, powers, and so on. For instance, as shown below, the number of different possible orderings of a deck o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


European Journal Of Combinatorics
The ''European Journal of Combinatorics'' is an international peer-reviewed scientific journal that specializes in combinatorics. The journal primarily publishes papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and the theories of computing. The journal includes full-length research papers, short notes, and research problems on several topics. This journal has been founded in 1980 by Michel Deza, Michel Las Vergnas and Pierre Rosenstiehl. The current editor-in-chief is Patrice Ossona de Mendez and the vice editor-in-chief is Marthe Bonamy. Abstracting and indexing The journal is abstracted and indexed in *MathSciNet, *Science Citation Index Expanded, *Scopus Scopus is a scientific abstract and citation database, launched by the academic publisher Elsevier as a competitor to older Web of Science in 2004. The ensuing competition between the two databases has been characterized as "intense" and is c . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. In 2020, most of the editorial board of ''JCTA'' resigned to form a new,

picture info

Integer Partition
In number theory and combinatorics, a partition of a non-negative integer , also called an integer partition, is a way of writing as a summation, sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition (combinatorics), composition.) For example, can be partitioned in five distinct ways: : : : : : The only partition of zero is the empty sum, having no parts. The order-dependent composition is the same partition as , and the two distinct compositions and represent the same partition as . An individual summand in a partition is called a part. The number of partitions of is given by the Partition function (number theory), partition function . So . The notation means that is a partition of . Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monomial Symmetric Polynomial
In mathematics, a symmetric polynomial is a polynomial in variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, is a ''symmetric polynomial'' if for any permutation of the subscripts one has . Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting. From this point of view the elementary symmetric polynomials are the most fundamental symmetric polynomials. Indeed, a theorem called the fundamental theorem of symmetric polynomials states that any symmetric polynomial can be expressed in terms of elementary symmetric polynomials. This implies that every ''symmetric'' polynomial expression in the roots of a monic polynomial can alternatively be given as a polynomial expression in the coefficients of the polynomial. Symmet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]