Q-Gaussian Process
q-Gaussian processes are deformations of the usual Gaussian distribution. There are several different versions of this; here we treat a multivariate deformation, also addressed as q-Gaussian process, arising from free probability theory and corresponding to deformations of the canonical commutation relations. For other deformations of Gaussian distributions, see q-Gaussian distribution and Gaussian q-distribution In mathematical physics and probability and statistics, the Gaussian ''q''-distribution is a family of probability distributions that includes, as limiting cases, the uniform distribution and the normal (Gaussian) distribution. It was introduc .... History The q-Gaussian process was formally introduced in a paper by Frisch and Bourret under the name of ''parastochastics'', and also later by Greenberg as an example of ''infinite statistics''. It was mathematically established and investigated in papers by Bozejko and Speicher and by Bozejko, Kümmerer, and Speicher ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal distr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Probability Theory
Free probability is a mathematical theory that studies non-commutative random variables. The "freeness" or free independence property is the analogue of the classical notion of independence, and it is connected with free products. This theory was initiated by Dan Voiculescu around 1986 in order to attack the free group factors isomorphism problem, an important unsolved problem in the theory of operator algebras. Given a free group on some number of generators, we can consider the von Neumann algebra generated by the group algebra, which is a type II1 factor. The isomorphism problem asks whether these are isomorphic for different numbers of generators. It is not even known if any two free group factors are isomorphic. This is similar to Tarski's free group problem, which asks whether two different non-abelian finitely generated free groups have the same elementary theory. Later connections to random matrix theory, combinatorics, representations of symmetric groups, lar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Commutation Relations
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, hat x,\hat p_x= i\hbar \mathbb between the position operator and momentum operator in the direction of a point particle in one dimension, where is the commutator of and , is the imaginary unit, and is the reduced Planck's constant , and \mathbb is the unit operator. In general, position and momentum are vectors of operators and their commutation relation between different components of position and momentum can be expressed as hat r_i,\hat p_j= i\hbar \delta_ \mathbb. where \delta_ is the Kronecker delta. This relation is attributed to Werner Heisenberg, Max Born and Pascual Jordan (1925), who called it a "quantum condition" serving as a postulate of the theory; it was noted by E. Kennard (1927) to imply the Heisenberg uncertainty pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Q-Gaussian Distribution
The ''q''-Gaussian is a probability distribution arising from the maximization of the Tsallis entropy under appropriate constraints. It is one example of a Tsallis distribution. The ''q''-Gaussian is a generalization of the Gaussian in the same way that Tsallis entropy is a generalization of standard Boltzmann–Gibbs entropy or Shannon entropy. The normal distribution is recovered as ''q'' → 1. The ''q''-Gaussian has been applied to problems in the fields of statistical mechanics, geology, anatomy, astronomy, economics, finance, and machine learning. The distribution is often favored for its heavy tails in comparison to the Gaussian for 1 < ''q'' < 3. For the ''q''-Gaussian distribution is the PDF of a bounded . This makes in biology and other domains the ''q''-Gaussian distribution more suitable th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian Q-distribution
In mathematical physics and probability and statistics, the Gaussian ''q''-distribution is a family of probability distributions that includes, as limiting cases, the uniform distribution and the normal (Gaussian) distribution. It was introduced by Diaz and Teruel, is a q-analog of the Gaussian or normal distribution. The distribution is symmetric about zero and is bounded, except for the limiting case of the normal distribution. The limiting uniform distribution is on the range -1 to +1. Definition Let ''q'' be a real number in the interval , 1). The probability density function of the Gaussian ''q''-distribution is given by :s_q(x) = \begin 0 & \text x \nu. \end where :\nu = \nu(q) = \frac , : c(q)=2(1-q)^\sum_^\infty \frac . The ''q''-analogue [''t'']''q'' of the real number t is given by : [t]_q=\frac. The ''q''-analogue of the exponential function is the q-exponential, ''E'', which is given by : E_q^=\sum_^q^\frac where the ''q''-analogue of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fock Space
The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space . It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung" (" Configuration space and second quantization"). M.C. Reed, B. Simon, "Methods of Modern Mathematical Physics, Volume II", Academic Press 1975. Page 328. Informally, a Fock space is the sum of a set of Hilbert spaces representing zero particle states, one particle states, two particle states, and so on. If the identical particles are bosons, the -particle states are vectors in a symmetrized tensor product of single-particle Hilbert spaces . If the identical particles are fermions, the -particle states are vectors in an antisymmetrized tensor product of single-particle Hilbert spaces (see symmetric algebra and exterior algebra respectively). A general sta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wick Theorem
Wick's theorem is a method of reducing high-order derivatives to a combinatorics problem. It is named after Italian physicist Gian-Carlo Wick. It is used extensively in quantum field theory to reduce arbitrary products of creation and annihilation operators to sums of products of pairs of these operators. This allows for the use of Green's function methods, and consequently the use of Feynman diagrams in the field under study. A more general idea in probability theory is Isserlis' theorem. In perturbative quantum field theory, Wick's theorem is used to quickly rewrite each time ordered summand in the Dyson series as a sum of normal ordered terms. In the limit of asymptotically free ingoing and outgoing states, these terms correspond to Feynman diagrams. Definition of contraction For two operators \hat and \hat we define their contraction to be :\hat^\bullet\, \hat^\bullet \equiv \hat\,\hat\, - \mathopen \hat\,\hat \mathclose where \mathopen \hat \mathclose denotes the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isserlis Theorem
In probability theory, Isserlis' theorem or Wick's probability theorem is a formula that allows one to compute higher-order moments of the multivariate normal distribution in terms of its covariance matrix. It is named after Leon Isserlis. This theorem is also particularly important in particle physics, where it is known as Wick's theorem after the work of . Other applications include the analysis of portfolio returns, quantum field theory and generation of colored noise. Statement If (X_1,\dots, X_) is a zero-mean multivariate normal random vector, then\operatorname ,X_1 X_2\cdots X_\,= \sum_\prod_ \operatorname ,X_i X_j\,= \sum_\prod_ \operatorname(\,X_i, X_j\,), where the sum is over all the pairings of \, i.e. all distinct ways of partitioning \ into pairs \, and the product is over the pairs contained in p. In his original paper, Leon Isserlis proves this theorem by mathematical induction, generalizing the formula for the 4^ order moments, which takes the appearance : ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brownian Motion
Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the equipartition theorem). This motion is named after the botanist Robert Brown, who first described the phenomenon in 1827, while looking th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wigner Semicircle Distribution
The Wigner semicircle distribution, named after the physicist Eugene Wigner, is the probability distribution on minus;''R'', ''R''whose probability density function ''f'' is a scaled semicircle (i.e., a semi-ellipse) centered at (0, 0): :f(x)=\sqrt\, for −''R'' ≤ ''x'' ≤ ''R'', and ''f''(''x'') = 0 if '', x, '' > ''R''. It is also a scaled beta distribution: if ''Y'' is beta-distributed with parameters α = β = 3/2, then ''X'' = 2''RY'' – ''R'' has the Wigner semicircle distribution. The distribution arises as the limiting distribution of eigenvalues of many random symmetric matrices as the size of the matrix approaches infinity. The distribution of the spacing between eigenvalues is addressed by the similarly named Wigner surmise. General properties The Chebyshev polynomials of the third kind are orthogonal polynomials with respect to the Wigner semicircle distribution. For positive integers ''n'', the 2''n''-th moment of this distribution is :E(X^)=\le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Von Neumann Algebra
In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra. Von Neumann algebras were originally introduced by John von Neumann, motivated by his study of single operators, group representations, ergodic theory and quantum mechanics. His double commutant theorem shows that the analytic definition is equivalent to a purely algebraic definition as an algebra of symmetries. Two basic examples of von Neumann algebras are as follows: *The ring L^\infty(\mathbb R) of essentially bounded measurable functions on the real line is a commutative von Neumann algebra, whose elements act as multiplication operators by pointwise multiplication on the Hilbert space L^2(\mathbb R) of square-integrable functions. *The algebra \mathcal B(\mathcal H) of all bounded operators on a Hilbert space \mathcal H is a von Neumann ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |