Pitot Theorem
The Pitot theorem in geometry states that in a tangential quadrilateral the two pairs of opposite sides have the same total length. It is named after French engineer Henri Pitot. Statement and converse A tangential quadrilateral is usually defined as a convex polygon, convex quadrilateral for which all four sides are Tangent lines to circles, tangent to the same inscribed circle. Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. The converse implication is also true: whenever a convex quadrilateral has pairs of opposite sides with the same sums of lengths, it has an inscribed circle. Therefore, this is an exact characterization: the tangential quadrilaterals are exactly the quadrilaterals with equal sums of opposite side lengths.. See in particular pp. 65–66. Proof idea One way to prove the Pitot's theorem is to divide the sides of any given tang ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pitot Theorem
The Pitot theorem in geometry states that in a tangential quadrilateral the two pairs of opposite sides have the same total length. It is named after French engineer Henri Pitot. Statement and converse A tangential quadrilateral is usually defined as a convex polygon, convex quadrilateral for which all four sides are Tangent lines to circles, tangent to the same inscribed circle. Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. The converse implication is also true: whenever a convex quadrilateral has pairs of opposite sides with the same sums of lengths, it has an inscribed circle. Therefore, this is an exact characterization: the tangential quadrilaterals are exactly the quadrilaterals with equal sums of opposite side lengths.. See in particular pp. 65–66. Proof idea One way to prove the Pitot's theorem is to divide the sides of any given tang ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tangential Quadrilateral
In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex polygon, convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the Incircle and excircles of a triangle, incircle of the quadrilateral or its inscribed circle, its center is the ''incenter'' and its radius is called the ''inradius''. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called ''circumscribable quadrilaterals'', ''circumscribing quadrilaterals'', and ''circumscriptible quadrilaterals''. Tangential quadrilaterals are a special case of tangential polygons. Other less frequently used names for this class of quadrilaterals are ''inscriptable quadrilateral'', ''inscriptible quadrilateral'', ''inscribable quadrilateral'', ''circumcyclic quadrilateral'', and ''co-cyclic quadrilateral''.. Due to the risk of confusion with a qu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henri Pitot
Henri Pitot (; May 3, 1695 – December 27, 1771) was a French hydraulic engineer and the inventor of the pitot tube. The incoming fluid in the internal tube may be blocked off where a pressure gauge can indicate the pressure, or fed to a closed space to pressurise that space such as to the float bowl in a carburetor, or to a manometer using the fluid which is flowing. In that last case the height of the fluid column is proportional to the square of the velocity of the fluid at the inlet to the pitot tube. This relationship was discovered by Henri Pitot in 1732, when he was assigned the task of measuring the flow in the river Seine. He rose to fame with the design of the Aqueduc de Saint-Clément near Montpellier (the construction lasted thirteen years), and the extension of Pont du Gard in Nîmes. In 1724, he became a member of the French Academy of Sciences, and in 1740 a fellow of the Royal Society. The Pitot theorem of plane geometry is named after him. Rue Henri Pitot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dover Publications
Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward and Blanche Cirker. It primarily reissues books that are out of print from their original publishers. These are often, but not always, books in the public domain. The original published editions may be scarce or historically significant. Dover republishes these books, making them available at a significantly reduced cost. Classic reprints Dover reprints classic works of literature, classical sheet music, and public-domain images from the 18th and 19th centuries. Dover also publishes an extensive collection of mathematical, scientific, and engineering texts. It often targets its reprints at a niche market, such as woodworking. Starting in 2015, the company branched out into graphic novel reprints, overseen by Dover acquisitions editor and former comics writer and editor Drew Ford. Most Dover reprints are photo facsimiles of the originals, retaining the original pagination ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Polygon
In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). Equivalently, a polygon is convex if every line that does not contain any edge intersects the polygon in at most two points. Strictly convex polygon A convex polygon is ''strictly'' convex if no line contains more than two vertices of the polygon. In a convex polygon, all interior angles are less than ''or equal'' to 180 degrees, while in a strictly convex polygon all interior angles are strictly less than 180 degrees. Properties The following properties of a simple polygon are all equivalent to convexity: *Every internal angle is less than or equal to 180 degrees. *Every point on every line segment between two points inside or on the boundary of the polygon remains inside or on the bou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadrilateral
In Euclidean geometry, geometry a quadrilateral is a four-sided polygon, having four Edge (geometry), edges (sides) and four Vertex (geometry), corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. pentagon). Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices A, B, C and D is sometimes denoted as \square ABCD. Quadrilaterals are either simple polygon, simple (not self-intersecting), or complex polygon, complex (self-intersecting, or crossed). Simple quadrilaterals are either convex polygon, convex or concave polygon, concave. The Internal and external angle, interior angles of a simple (and Plane (geometry), planar) quadrilateral ''ABCD'' add up to 360 Degree (angle), degrees, that is :\angle A+\angle B+\angle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tangent Lines To Circles
In Euclidean geometry, Euclidean plane geometry, a tangent line to a circle is a Line (geometry), line that touches the circle at exactly one Point (geometry), point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical Compass and straightedge constructions, constructions and Mathematical proof, proofs. Since the tangent, tangent line to a circle at a Point (geometry), point is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonality, orthogonal circles. Tangent lines to one circle A tangent line to a circle Line-line intersection, intersects the circle at a single point . For comparison, secant lines intersect a circle at two points, whereas another line may not intersect a circle at all. This property of tangent lines is preserved under many geometrical Transformation (geometry), transformations, such as scaling (g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inscribed Circle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semiperimeter
In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter . Motivation: triangles The semiperimeter is used most often for triangles; the formula for the semiperimeter of a triangle with side lengths :s = \frac. Properties In any triangle, any vertex and the point where the opposite excircle touches the triangle partition the triangle's perimeter into two equal lengths, thus creating two paths each of which has a length equal to the semiperimeter. If are as shown in the figure, then the segments connecting a vertex with the opposite excircle tangency (, shown in red in the diagram) are known as splitters, and :\begin s &= , AB, +, A'B, =, AB, +, AB', =, AC, +, A'C, \\ &= , AC, +, AC', =, BC, +, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Converse Implication
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication ''P'' → ''Q'', the converse is ''Q'' → ''P''. For the categorical proposition ''All S are P'', the converse is ''All P are S''. Either way, the truth of the converse is generally independent from that of the original statement.Robert Audi, ed. (1999), ''The Cambridge Dictionary of Philosophy'', 2nd ed., Cambridge University Press: "converse". Implicational converse Let ''S'' be a statement of the form ''P implies Q'' (''P'' → ''Q''). Then the ''converse'' of ''S'' is the statement ''Q implies P'' (''Q'' → ''P''). In general, the truth of ''S'' says nothing about the truth of its converse, unless the antecedent ''P'' and the consequent ''Q'' are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal." The converse of that statement is "If I am mortal, then I am a huma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |