Persistence Module
   HOME



picture info

Persistence Module
A persistence module is a mathematical structure in persistent homology and topological data analysis that formally captures the persistence of topological features of an object across a range of scale parameters. A persistence module often consists of a collection of homology groups (or vector spaces if using field coefficients) corresponding to a filtration of topological spaces, and a collection of linear maps induced by the inclusions of the filtration. The concept of a persistence module was first introduced in 2005 as an application of graded modules over polynomial rings, thus importing well-developed algebraic ideas from classical commutative algebra theory to the setting of persistent homology. Since then, persistence modules have been one of the primary algebraic structures studied in the field of applied topology. Definition Single Parameter Persistence Modules Let T be a totally ordered set and let K be a field. The set T is sometimes called the ''indexing set''. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematical Structure
In mathematics, a structure on a set (or on some sets) refers to providing or endowing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance. A partial list of possible structures are measures, algebraic structures ( groups, fields, etc.), topologies, metric structures ( geometries), orders, graphs, events, equivalence relations, differential structures, and categories. Sometimes, a set is endowed with more than one feature simultaneously, which allows mathematicians to study the interaction between the different structures more richly. For example, an ordering imposes a rigid form, shape, or topology on the set, and if a set has both a topology feature and a group feature, such that these two features are related in a certain way, then the structure becomes a topological ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Structure
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets (finite sets or sets with the same cardinality as the natural numbers). However, there is no exact definition of the term "discrete mathematics". The set of objects studied in discrete mathematics can be finite or infinite. The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deals with finite se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrix (mathematics), matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The algebraic objects amenable to such a description include group (mathematics), groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the group representation, representation theory of groups, in which elements of a group are represented by invertible matrices such that the group operation is matrix multiplication. Representation theory is a useful method because it reduces problems in abstract algebra to problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities (known as ''axioms'') that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Point Cloud
A point cloud is a discrete set of data Point (geometry), points in space. The points may represent a 3D shape or object. Each point Position (geometry), position has its set of Cartesian coordinates (X, Y, Z). Points may contain data other than position such as RGB color spaces, RGB colors, Normal (geometry), normals, Timestamp, timestamps and others. Point clouds are generally produced by 3D scanners or by photogrammetry software, which measure many points on the external surfaces of objects around them. As the output of 3D scanning processes, point clouds are used for many purposes, including to create 3D computer-aided design (CAD) or geographic information systems (GIS) models for manufactured parts, for metrology and quality inspection, and for a multitude of visualizing, animating, rendering, and mass customization applications. Alignment and registration When scanning a scene in real world using Lidar, the captured point clouds contain snippets of the scene, which requ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inclusion Map
In mathematics, if A is a subset of B, then the inclusion map is the function \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota(x)=x. An inclusion map may also be referred to as an inclusion function, an insertion, or a canonical injection. A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: \iota: A\hookrightarrow B. (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructures are sometimes called natural injections. Given any morphism f between objects X and Y, if there is an inclusion map \iota : A \to X into the domain X, then one can form the restriction f\circ \iota of f. In many instances, one can also construct a canonical inclusion into the codomain R \to Y known as the range of f. Applications of inclusion maps Inclusion maps tend to be homomorphisms of algebraic structures; thus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Induced Homomorphism
In mathematics, especially in algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space ''X'' to a topological space ''Y'' induces a group homomorphism from the fundamental group of ''X'' to the fundamental group of ''Y''. More generally, in category theory, any functor by definition provides an induced morphism in the target category for each morphism in the source category. For example, fundamental groups, higher homotopy groups, singular homology, and De Rham cohomology are algebraic structures that are ''functorial'', meaning that their definition provides a functor from (e.g.) the category of topological spaces to (e.g.) the category of groups or rings. This means that each space is associated with an algebraic structure, while each continuous map between spaces is associated with a structure-preserving map between structures, called an induced homomorphism. A homomorphism i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interleaving Distance
In topological data analysis, the interleaving distance is a measure of similarity between persistence modules, a common object of study in topological data analysis and persistent homology. The interleaving distance was first introduced by Frédéric Chazal et al. in 2009. since then, it and its generalizations have been a central consideration in the study of applied algebraic topology and topological data analysis. Definition A ''persistence module'' \mathbb V is a collection (V_t \mid t \in \mathbb R) of vector spaces indexed over the Number line, real line, along with a collection (v^s_t : V_s \to V_t \mid s\leq t) of linear maps such that v^t_t is always an isomorphism, and the relation v^s_t \circ v^r_s = v^r_t is satisfied for every r\leq s \leq t. The case of \mathbb R indexing is presented here for simplicity, though the interleaving distance can be readily adapted to more general settings, including multi-dimensional persistence modules. Let \mathbb U and \mathbb V be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE