Perpendicular Bisector Construction Of A Quadrilateral
In geometry, the perpendicular bisector construction of a quadrilateral is a construction which produces a new quadrilateral from a given quadrilateral using the perpendicular bisectors to the sides of the former quadrilateral. This construction arises naturally in an attempt to find a replacement for the circumcenter of a quadrilateral in the case that is non-cyclic. Definition of the construction Suppose that the vertices of the quadrilateral Q are given by Q_1,Q_2,Q_3,Q_4 . Let b_1,b_2,b_3,b_4 be the perpendicular bisectors of sides Q_1Q_2,Q_2Q_3,Q_3Q_4,Q_4Q_1 respectively. Then their intersections Q_i^=b_b_ , with subscripts considered modulo 4, form the consequent quadrilateral Q^ . The construction is then iterated on Q^ to produce Q^ and so on. An equivalent construction can be obtained by letting the vertices of Q^ be the circumcenter In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadrilateral
In Euclidean geometry, geometry a quadrilateral is a four-sided polygon, having four Edge (geometry), edges (sides) and four Vertex (geometry), corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. pentagon). Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices A, B, C and D is sometimes denoted as \square ABCD. Quadrilaterals are either simple polygon, simple (not self-intersecting), or complex polygon, complex (self-intersecting, or crossed). Simple quadrilaterals are either convex polygon, convex or concave polygon, concave. The Internal and external angle, interior angles of a simple (and Plane (geometry), planar) quadrilateral ''ABCD'' add up to 360 Degree (angle), degrees, that is :\angle A+\angle B+\angle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circumcenter
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case , a cyclic quadrilateral. All rectangles, isosceles trapezoids, right kites, and regular polygons are cyclic, but not every polygon is. Straightedge and compass construction The circumcenter of a triangle can be constructed by drawing any two of the three perpendicular bisectors. For three non-collinear points, these two lines cannot be parallel, and the circumcenter is the point where they cross. Any point on the bisector is equidistant from th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex (geometry)
In geometry, a vertex (: vertices or vertexes), also called a corner, is a point (geometry), point where two or more curves, line (geometry), lines, or line segments Tangency, meet or Intersection (geometry), intersect. For example, the point where two lines meet to form an angle and the point where edge (geometry), edges of polygons and polyhedron, polyhedra meet are vertices. Definition Of an angle The ''vertex'' of an angle is the point where two Line (mathematics)#Ray, rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. :(3 vols.): (vol. 1), (vol. 2), (vol. 3). Of a polytope A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection (Euclidean geometry), intersection of Edge (geometry), edges, face (geometry), faces or facets of the object. In a polygon, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homothetic Transformation
In mathematics, a homothety (or homothecy, or homogeneous dilation) is a Transformation (mathematics), transformation of an affine space determined by a point called its ''center'' and a nonzero number called its ''ratio'', which sends point to a point by the rule, : \overrightarrow=k\overrightarrow for a fixed number k\ne 0. Using position vectors: :\mathbf x'=\mathbf s + k(\mathbf x -\mathbf s). In case of S=O (Origin): :\mathbf x'=k\mathbf x, which is a uniform scaling and shows the meaning of special choices for k: :for k=1 one gets the ''identity'' mapping, :for k=-1 one gets the ''reflection'' at the center, For 1/k one gets the ''inverse'' mapping defined by k. In Euclidean geometry homotheties are the Similarity (geometry), similarities that fix a point and either preserve (if k>0) or reverse (if k<0) the direction of all vectors. Together with the Translation (geometry), translations, all homotheties of an affine (or Euclidean) space form a group (mathematics ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Similarity (geometry)
In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling (geometry), scaling (enlarging or reducing), possibly with additional translation (geometry), translation, rotation (mathematics), rotation and reflection (mathematics), reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruence (geometry), congruent to the result of a particular uniform scaling of the other. For example, all circles are similar to each other, all squares are similar to each other, and all equilateral triangles are similar to each other. On the other hand, ellipses are not all similar to each other, rectangles are not all similar to each other, and isosceles triangles are not all similar to each other. This is because two ellipse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Conjugation
__NOTOC__ In geometry, the isogonal conjugate of a point with respect to a triangle is constructed by reflecting the lines about the angle bisectors of respectively. These three reflected lines concur at the isogonal conjugate of . (This definition applies only to points not on a sideline of triangle .) This is a direct result of the trigonometric form of Ceva's theorem. The isogonal conjugate of a point is sometimes denoted by . The isogonal conjugate of is . The isogonal conjugate of the incentre is itself. The isogonal conjugate of the orthocentre is the circumcentre . The isogonal conjugate of the centroid is (by definition) the symmedian point . The isogonal conjugates of the Fermat points are the isodynamic points and vice versa. The Brocard points are isogonal conjugates of each other. In trilinear coordinates, if X=x:y:z is a point not on a sideline of triangle , then its isogonal conjugate is \tfrac : \tfrac : \tfrac. For this reason, the isogonal conjug ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isoptic Point
In the geometry of curves, an orthoptic is the Set (mathematics), set of points for which two tangents of a given curve meet at a right angle. Examples: # The orthoptic of a parabola is its directrix (proof: see #Orthoptic of a parabola, below), # The orthoptic of an ellipse \tfrac + \tfrac = 1 is the director circle x^2 + y^2 = a^2 + b^2 (see #Ellipse, below), # The orthoptic of a hyperbola \tfrac - \tfrac = 1,\ a > b is the director circle x^2 + y^2 = a^2 - b^2 (in case of there are no orthogonal tangents, see #Hyperbola, below), # The orthoptic of an astroid x^ + y^ = 1 is a quadrifolium with the polar equation r=\tfrac\cos(2\varphi), \ 0\le \varphi < 2\pi (see #Orthoptic of an astroid, below). Generalizations: # An isoptic is the set of points for which two tangents of a given curve meet at a ''fixed angle'' (see #Isoptic of a parabola, an ellipse and a hyperbola, below). # An isoptic of ''two'' plane curves is the set of points for which two tangents meet at a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |