HOME





P4-metric
P4 metric (also known as FS or Symmetric F ) enables performance evaluation of the binary classifier. It is calculated from precision, recall, specificity and NPV (negative predictive value). P4 is designed in similar way to F1 metric, however addressing the criticisms leveled against F1. It may be perceived as its extension. Like the other known metrics, P4 is a function of: TP (true positives), TN (true negatives), FP (false positives), FN (false negatives). Justification The key concept of P4 is to leverage the four key conditional probabilities: :P(+ \mid C) - the probability that the sample is positive, provided the classifier result was positive. :P(C \mid +) - the probability that the classifier result will be positive, provided the sample is positive. :P(C \mid -) - the probability that the classifier result will be negative, provided the sample is negative. :P(- \mid C) - the probability the sample is negative, provided the classifier result was negative. The main ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

F-score
In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly, and the recall is the number of true positive results divided by the number of all samples that should have been identified as positive. Precision is also known as positive predictive value, and recall is also known as sensitivity in diagnostic binary classification. The F1 score is the harmonic mean of the precision and recall. It thus symmetrically represents both precision and recall in one metric. The more generic F_\beta score applies additional weights, valuing one of precision or recall more than the other. The highest possible value of an F-score is 1.0, indicating perfect precision and recall, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binary Classification
Binary classification is the task of classifying the elements of a set into one of two groups (each called ''class''). Typical binary classification problems include: * Medical testing to determine if a patient has a certain disease or not; * Quality control in industry, deciding whether a specification has been met; * In information retrieval, deciding whether a page should be in the result set of a search or not * In administration, deciding whether someone should be issued with a driving licence or not * In cognition, deciding whether an object is food or not food. When measuring the accuracy of a binary classifier, the simplest way is to count the errors. But in the real world often one of the two classes is more important, so that the number of both of the different types of errors is of interest. For example, in medical testing, detecting a disease when it is not present (a '' false positive'') is considered differently from not detecting a disease when it is present (a '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accuracy And Precision
Accuracy and precision are two measures of ''observational error''. ''Accuracy'' is how close a given set of measurements (observations or readings) are to their ''true value''. ''Precision'' is how close the measurements are to each other. The International Organization for Standardization (ISO) defines a related measure: ''trueness'', "the closeness of agreement between the arithmetic mean of a large number of test results and the true or accepted reference value." While ''precision'' is a description of ''random errors'' (a measure of statistical variability), ''accuracy'' has two different definitions: # More commonly, a description of ''systematic errors'' (a measure of statistical bias of a given measure of central tendency, such as the mean). In this definition of "accuracy", the concept is independent of "precision", so a particular set of data can be said to be accurate, precise, both, or neither. This concept corresponds to ISO's ''trueness''. # A combination of both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Ratios
Statistics (from German: ', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample to the population as a whole. An experimental study involves taking measurements of the sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evaluation Of Machine Translation
Various methods for the evaluation for machine translation have been employed. This article focuses on the evaluation of the output of machine translation, rather than on performance or usability evaluation. Round-trip translation A typical way for lay people to assess machine translation quality is to translate from a source language to a target language and back to the source language with the same engine. Though intuitively this may seem like a good method of evaluation, it has been shown that round-trip translation is a "poor predictor of quality". The reason why it is such a poor predictor of quality is reasonably intuitive. A round-trip translation is not testing one system, but two systems: the language pair of the engine for translating ''into'' the target language, and the language pair translating ''back from'' the target language. Consider the following examples of round-trip translation performed from English to Italian and Portuguese from Somers (2005): : : In t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Natural Language Processing
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics. Major tasks in natural language processing are speech recognition, text classification, natural language understanding, and natural language generation. History Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence, though at the time that was not articulated as a problem separate from artificial intelligence. The proposed test includes a task that involves the automated interpretation and generation of natural language. Symbolic NLP (1950s – ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Confusion Matrix
In the field of machine learning and specifically the problem of statistical classification, a confusion matrix, also known as error matrix, is a specific table layout that allows visualization of the performance of an algorithm, typically a supervised learning one; in unsupervised learning it is usually called a matching matrix. Each row of the matrix represents the instances in an actual class while each column represents the instances in a predicted class, or vice versa – both variants are found in the literature. The diagonal of the matrix therefore represents all instances that are correctly predicted. The name stems from the fact that it makes it easy to see whether the system is confusing two classes (i.e. commonly mislabeling one as another). It is a special kind of contingency table, with two dimensions ("actual" and "predicted"), and identical sets of "classes" in both dimensions (each combination of dimension and class is a variable in the contingency table). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phi Coefficient
In statistics, the phi coefficient, or mean square contingency coefficient, denoted by ''φ'' or ''r''''φ'', is a measure of association for two binary variables. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975. Introduced by Karl Pearson,Cramer, H. (1946). ''Mathematical Methods of Statistics''. Princeton: Princeton University Press, p. 282 (second paragraph). https://archive.org/details/in.ernet.dli.2015.223699 and also known as the ''Yule phi coefficient'' from its introduction by Udny Yule in 1912 this measure is similar to the Pearson correlation coefficient in its interpretation. In meteorology, the phi coefficient, or its square (the latter aligning with M. H. Doolittle's original proposition from 1885), is referred to as the Doolittle Skill Score or the Doolittle Measure of Association. Definition A Pears ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Youden's J Statistic
Youden's J statistic (also called Youden's index) is a single statistic that captures the performance of a dichotomy, dichotomous diagnostic test. In meteorology, this statistic is referred to as Peirce Skill Score (PSS), Hanssen–Kuipers Discriminant (HKD), or True Skill Statistic (TSS). (Bookmaker) Informedness is its generalization to the multiclass case and estimates the probability of an Decision-making, informed decision. Definition Youden's ''J'' statistic is : J = \text + \text -1=\text_1 + \text_0 -1 with the two right-hand quantities being sensitivity and specificity. Thus the expanded formula is: :J = \frac+\frac-1 = \frac In this equation, TP is the number of true positives, TN the number of true negatives, FP the number of false positives and FN the number of false negatives. The index was suggested by William J. Youden, W. J. Youden in 1950 as a way of summarising the performance of a diagnostic test; however, the formula was earlier published in ''Scienc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Markedness
In linguistics and social sciences, markedness is the state of standing out as nontypical or divergent as opposed to regular or common. In a marked–unmarked relation, one term of an opposition is the broader, dominant one. The dominant default or minimum-effort form is known as ''unmarked''; the other, secondary one is ''marked''. In other words, markedness involves the characterization of a "normal" linguistic unit against one or more of its possible "irregular" forms. In linguistics, markedness can apply to, among others, phonological, grammatical, and semantic oppositions, defining them in terms of marked and unmarked oppositions, such as ''honest'' (unmarked) vs. ''dishonest'' (marked). Marking may be purely semantic, or may be realized as extra morphology. The term derives from the marking of a grammatical role with a suffix or another element, and has been extended to situations where there is no morphological distinction. In social sciences more broadly, markedness ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Precision And Recall
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written as a formula: \text = \frac Recall (also known as sensitivity) is the fraction of relevant instances that were retrieved. Written as a formula: \text = \frac Both precision and recall are therefore based on relevance. Consider a computer program for recognizing dogs (the relevant element) in a digital photograph. Upon processing a picture which contains ten cats and twelve dogs, the program identifies eight dogs. Of the eight elements identified as dogs, only five actually are dogs ( true positives), while the other three are cats ( false positives). Seven dogs were missed ( false negatives), and seven cats were correctly ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]