HOME





No Free Lunch With Vanishing Risk
No free lunch with vanishing risk (NFLVR) is a concept used in mathematical finance as a strengthening of the no-arbitrage condition. In continuous time finance the existence of an equivalent martingale measure (EMM) is no more equivalent to the no-arbitrage-condition (unlike in discrete time finance), but is instead equivalent to the NFLVR-condition. This is known as the first fundamental theorem of asset pricing. Informally speaking, a market allows for a ''free lunch with vanishing risk'' if there are admissible strategies, which can be chosen arbitrarily close to an arbitrage strategy, i.e., these strategies start with no wealth, end up with positive wealth with probability greater than zero (free lunch) and the probability of ending up with negative wealth can be chosen arbitrarily small (vanishing risk). Mathematical definition For a semimartingale S, let * K = \ where a strategy is called admissible if it is self-financing and its value process V_t=\int_0^t H_u \cdot \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Finance
Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling in the financial field. In general, there exist two separate branches of finance that require advanced quantitative techniques: derivatives pricing on the one hand, and risk and portfolio management on the other. Mathematical finance overlaps heavily with the fields of computational finance and financial engineering. The latter focuses on applications and modeling, often with the help of stochastic asset models, while the former focuses, in addition to analysis, on building tools of implementation for the models. Also related is quantitative investing, which relies on statistical and numerical models (and lately machine learning) as opposed to traditional fundamental analysis when managing portfolios. French mathematician Louis Bachelier's doctoral thesis, defended in 1900, is considered the first scholarly work on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arbitrage
Arbitrage (, ) is the practice of taking advantage of a difference in prices in two or more marketsstriking a combination of matching deals to capitalize on the difference, the profit being the difference between the market prices at which the unit is traded. Arbitrage has the effect of causing prices of the same or very similar assets in different markets to converge. When used by academics in economics, an arbitrage is a transaction that involves no negative cash flow at any probabilistic or temporal state and a positive cash flow in at least one state; in simple terms, it is the possibility of a risk-free profit after transaction costs. For example, an arbitrage opportunity is present when there is the possibility to instantaneously buy something for a low price and sell it for a higher price. In principle and in academic use, an arbitrage is risk-free; in common use, as in statistical arbitrage, it may refer to ''expected'' profit, though losses may occur, and in practic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Risk-neutral Measure
In mathematical finance, a risk-neutral measure (also called an equilibrium measure, or '' equivalent martingale measure'') is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market, a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free. A risk-neutral measure is a probability measure The easiest way to remember what the risk-neutral measure is, or to explain it to a probability generalist who might not know much about finance, is to realize that it is: # The probability measure of a transformed random variable. Typically this transformation is the utility function of the payoff. The risk-neutral measure would be the measure co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fundamental Theorem Of Asset Pricing
The fundamental theorems of asset pricing (also: of arbitrage, of finance), in both financial economics and mathematical finance, provide necessary and sufficient conditions for a market to be arbitrage-free, and for a market to be complete. An arbitrage opportunity is a way of making money with no initial investment without any possibility of loss. Though arbitrage opportunities do exist briefly in real life, it has been said that any sensible market model must avoid this type of profit.Pascucci, Andrea (2011) ''PDE and Martingale Methods in Option Pricing''. Berlin: Springer-Verlag The first theorem is important in that it ensures a fundamental property of market models. Completeness is a common property of market models (for instance the Black–Scholes model). A complete market is one in which every contingent claim can be replicated. Though this property is common in models, it is not always considered desirable or realistic. Discrete markets In a discrete (i.e. finite sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Admissible Trading Strategy
In finance, an admissible trading strategy or admissible strategy is any trading strategy with wealth almost surely bounded from below. In particular, an admissible trading strategy precludes unhedged short sales of any unbounded assets. A typical example of a trading strategy which is not ''admissible'' is the doubling strategy. Mathematical definition Discrete time In a market with d assets, a trading strategy x \in \mathbb^d is ''admissible'' if x^T \bar = x^T \frac is almost surely bounded from below. In the definition let S be the vector of prices, r be the risk-free rate (and therefore \bar is the discounted price). In a model with more than one time then the wealth process associated with an admissible trading strategy must be uniformly bounded from below. Continuous time Let S=(S_t)_ be a d-dimensional semimartingale market and H=(H_t)_ a predictable stochastic process/trading strategy. Then H is called ''admissible integrand for the semimartingale'' S or just ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semimartingale
In probability theory, a real-valued stochastic process ''X'' is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined. The class of semimartingales is quite large (including, for example, all continuously differentiable processes, Brownian motion and Poisson processes). Submartingales and supermartingales together represent a subset of the semimartingales. Definition A real-valued process ''X'' defined on the filtered probability space (Ω,''F'',(''F''''t'')''t'' ≥ 0,P) is called a semimartingale if it can be decomposed as :X_t = M_t + A_t where ''M'' is a local martingale and ''A'' is a càdlàg adapted process of locally bounded variation. This means that for almost all \omega \in \Omega and all compact intervals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Admissible Trading Strategy
In finance, an admissible trading strategy or admissible strategy is any trading strategy with wealth almost surely bounded from below. In particular, an admissible trading strategy precludes unhedged short sales of any unbounded assets. A typical example of a trading strategy which is not ''admissible'' is the doubling strategy. Mathematical definition Discrete time In a market with d assets, a trading strategy x \in \mathbb^d is ''admissible'' if x^T \bar = x^T \frac is almost surely bounded from below. In the definition let S be the vector of prices, r be the risk-free rate (and therefore \bar is the discounted price). In a model with more than one time then the wealth process associated with an admissible trading strategy must be uniformly bounded from below. Continuous time Let S=(S_t)_ be a d-dimensional semimartingale market and H=(H_t)_ a predictable stochastic process/trading strategy. Then H is called ''admissible integrand for the semimartingale'' S or just ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Closure (topology)
In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection of all closed sets containing . Intuitively, the closure can be thought of as all the points that are either in or "very near" . A point which is in the closure of is a point of closure of . The notion of closure is in many ways dual to the notion of interior. Definitions Point of closure For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r > 0 there exists some s \in S such that the distance d(x, s) < r (x = s is allowed). Another way to expre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Norm Topology
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its . Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Informally, the operator norm \, T\, of a linear map T : X \to Y is the maximum factor by which it "lengthens" vectors. Introduction and definition Given two normed vector spaces V and W (over the same base field, either the real numbers \R or the complex numbers \Complex), a linear map A : V \to W is continuous if and only if there exists a real number c such that \, Av\, \leq c \, v\, \quad \text v\in V. The norm on the left is the one in W and the norm on the right is the one in V. Intuitively, the continuous operator A never increases the length of any vector by more than a factor of c. Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalent Martingale Measure
In mathematical finance, a risk-neutral measure (also called an equilibrium measure, or ''equivalent martingale measure'') is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market, a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free. A risk-neutral measure is a probability measure The easiest way to remember what the risk-neutral measure is, or to explain it to a probability generalist who might not know much about finance, is to realize that it is: # The probability measure of a transformed random variable. Typically this transformation is the utility function of the payoff. The risk-neutral measure would be the measure cor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sigma-martingale
In mathematics and information theory of probability, a sigma-martingale is a semimartingale with an integral representation. Sigma-martingales were introduced by C.S. Chou and M. Emery in 1977 and 1978. In financial mathematics, sigma-martingales appear in the fundamental theorem of asset pricing as an equivalent condition to no free lunch with vanishing risk (a no-arbitrage condition). Mathematical definition An \mathbb^d-valued stochastic process X = (X_t)_^T is a ''sigma-martingale'' if it is a semimartingale In probability theory, a real-valued stochastic process ''X'' is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the ... and there exists an \mathbb^d-valued martingale ''M'' and an ''M''- integrable predictable process \phi with values in \mathbb_+ such that :X = \phi \cdot M. References Martingale theory {{probability-st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]