Nikodym Set
In mathematics, a Nikodym set is a subset of the unit square in \mathbb^2 with complement of Lebesgue measure zero, such that, given any point in the set, there is a straight line that only intersects the set at that point. The existence of a Nikodym set was first proved by Otto Nikodym in 1927. Subsequently, constructions were found of Nikodym sets having continuum many exceptional lines for each point, and Kenneth Falconer found analogues in higher dimensions. Nikodym sets are closely related to Kakeya sets (also known as Besicovitch sets). The existence of Nikodym sets is sometimes compared with the Banach–Tarski paradox. There is, however, an important difference between the two: the Banach–Tarski paradox relies on non-measurable sets. Mathematicians have also researched Nikodym sets over finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lebesgue Measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called ''n''-dimensional volume, ''n''-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set ''A'' is here denoted by ''λ''(''A''). Henri Lebesgue described this measure in the year 1901, followed the next year by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902. Definition For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq\mathbb, the Lebesg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Otto Nikodym
Otto Marcin Nikodym (3 August 1887 – 4 May 1974) (also Otton Martin Nikodým) was a Polish mathematician. Education and career Nikodym studied mathematics at the University of Jan Kazimierz (UJK) in Lvov (today's University of Lviv). Immediately after his graduation in 1911, he started his teaching job at a high school in Kraków where he remained until 1924. He eventually obtained his doctorate in 1925 from the University of Warsaw; he also spent an academic year (1926-1927) in Sorbonne. Nikodym taught at the Jagiellonian University in Kraków and University of Warsaw and at the Akademia Górnicza in Kraków in the years that followed. He moved to the United States in 1948 and joined the faculty of Kenyon College. He retired in 1966 and moved to Utica, New York, where he continued his research until retirement. Personal life Nikodym was born in 1887 in Demycze, a suburb of Zabłotów (in modern day Ukraine), to a family with Polish, Czech, Italian and French ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kenneth Falconer (mathematician)
Kenneth John Falconer FRSE (born 25 January 1952) is an English mathematician working in mathematical analysis and in particular on fractal geometry. He is Regius Professor of Mathematics in the School of Mathematics and Statistics at the University of St Andrews. He is known for his work on the mathematics of fractals and in particular sets and measures arising from iterated function systems, especially self-similar and self-affine sets. Closely related is his research on Hausdorff and other fractal dimensions. He formulated ''Falconer's conjecture'' on the dimension of distance sets and conceived the notion of a digital sundial. In combinatorial geometry he established a lower bound of 5 for the chromatic number of the plane in the Lebesgue measurable case. Falconer was born at Bearsted Memorial Maternity Hospital outside Hampton Court Palace. He was educated at Kingston Grammar School, Kingston upon Thames and Corpus Christi College, Cambridge. He graduated in 1974 and compl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kakeya Set
In mathematics, a Kakeya set, or Besicovitch set, is a set of points in Euclidean space which contains a unit line segment in every direction. For instance, a disk of radius 1/2 in the Euclidean plane, or a ball of radius 1/2 in three-dimensional space, forms a Kakeya set. Much of the research in this area has studied the problem of how small such sets can be. Besicovitch showed that there are Besicovitch sets of measure zero. A Kakeya needle set (sometimes also known as a Kakeya set) is a (Besicovitch) set in the plane with a stronger property, that a unit line segment can be rotated continuously through 180 degrees within it, returning to its original position with reversed orientation. Again, the disk of radius 1/2 is an example of a Kakeya needle set. Kakeya needle problem The Kakeya needle problem asks whether there is a minimum area of a region D in the plane, in which a needle of unit length can be turned through 360°. This question was first posed, for convex regions, by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Banach–Tarski Paradox
The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different way to yield two identical copies of the original ball. Indeed, the reassembly process involves only moving the pieces around and rotating them without changing their shape. However, the pieces themselves are not "solids" in the usual sense, but infinite scatterings of points. The reconstruction can work with as few as five pieces. An alternative form of the theorem states that given any two "reasonable" solid objects (such as a small ball and a huge ball), the cut pieces of either one can be reassembled into the other. This is often stated informally as "a pea can be chopped up and reassembled into the Sun" and called the "pea and the Sun paradox". The theorem is called a paradox because it contradicts ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |