In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the concept of a measure is a generalization and formalization of
geometrical measures (
length
Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
,
area
Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
,
volume
Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
) and other common notions, such as
magnitude
Magnitude may refer to:
Mathematics
*Euclidean vector, a quantity defined by both its magnitude and its direction
*Magnitude (mathematics), the relative size of an object
*Norm (mathematics), a term for the size or length of a vector
*Order of ...
,
mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
, and
probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in
probability theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
,
integration theory, and can be generalized to assume
negative values, as with
electrical charge
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
. Far-reaching generalizations (such as
spectral measure
In mathematics, particularly in functional analysis, a projection-valued measure, or spectral measure, is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-va ...
s and
projection-valued measure
In mathematics, particularly in functional analysis, a projection-valued measure, or spectral measure, is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-va ...
s) of measure are widely used in
quantum physics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
and physics in general.
The intuition behind this concept dates back to
Ancient Greece
Ancient Greece () was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity (), that comprised a loose collection of culturally and linguistically r ...
, when
Archimedes
Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
tried to calculate the
area of a circle
In geometry, the area enclosed by a circle of radius is . Here, the Greek letter represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.
One method of deriving this formula, which ori ...
. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of
Émile Borel
Félix Édouard Justin Émile Borel (; 7 January 1871 – 3 February 1956) was a French people, French mathematician and politician. As a mathematician, he was known for his founding work in the areas of measure theory and probability.
Biograp ...
,
Henri Lebesgue
Henri Léon Lebesgue (; ; June 28, 1875 – July 26, 1941) was a French mathematician known for his Lebesgue integration, theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an ...
,
Nikolai Luzin
Nikolai Nikolayevich Luzin (also spelled Lusin; rus, Никола́й Никола́евич Лу́зин, p=nʲɪkɐˈlaj nʲɪkɐˈlajɪvʲɪtɕ ˈluzʲɪn, a=Ru-Nikilai Nikilayevich Luzin.ogg; 9 December 1883 – 28 February 1950) was a Sov ...
,
Johann Radon
Johann Karl August Radon (; 16 December 1887 – 25 May 1956) was an Austrian mathematician. His doctoral dissertation was on the calculus of variations (in 1910, at the University of Vienna).
Life
RadonBrigitte Bukovics: ''Biography of Johan ...
,
Constantin Carathéodory
Constantin Carathéodory (; 13 September 1873 – 2 February 1950) was a Greeks, Greek mathematician who spent most of his professional career in Germany. He made significant contributions to real and complex analysis, the calculus of variations, ...
, and
Maurice Fréchet
Maurice may refer to:
*Maurice (name), a given name and surname, including a list of people with the name
Places
* or Mauritius, an island country in the Indian Ocean
* Maurice, Iowa, a city
* Maurice, Louisiana, a village
* Maurice River, a t ...
, among others.
Definition

Let
be a set and
a
σ-algebra
In mathematical analysis and in probability theory, a σ-algebra ("sigma algebra") is part of the formalism for defining sets that can be measured. In calculus and analysis, for example, σ-algebras are used to define the concept of sets with a ...
over
A
set function
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line \R \cup \, which consists of the real numbers \R ...
from
to the
extended real number line
In mathematics, the extended real number system is obtained from the real number system \R by adding two elements denoted +\infty and -\infty that are respectively greater and lower than every real number. This allows for treating the potential ...
is called a measure if the following conditions hold:
*Non-negativity: For all
*
*Countable additivity (or
σ-additivity
In mathematics, an additive set function is a function \mu mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, \mu(A \cup B) = \mu(A) + \mu(B). If this ad ...
): For all
countable
In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
collections
of pairwise
disjoint sets
In set theory in mathematics and Logic#Formal logic, formal logic, two Set (mathematics), sets are said to be disjoint sets if they have no element (mathematics), element in common. Equivalently, two disjoint sets are sets whose intersection (se ...
in Σ,
If at least one set
has finite measure, then the requirement
is met automatically due to countable additivity:
and therefore
If the condition of non-negativity is dropped, and
takes on at most one of the values of
then
is called a ''
signed measure
In mathematics, a signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values, i.e., to acquire sign.
Definition
There are two slightly different concepts of a signed measure, de ...
''.
The pair
is called a ''
measurable space
In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured.
It captures and generalises intuitive notions such as length, area, an ...
'', and the members of
are called measurable sets.
A
triple is called a ''
measure space
A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the -algebra) and the method that ...
''. A
probability measure
In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies Measure (mathematics), measure properties such as ''countable additivity''. The difference between a probability measure an ...
is a measure with total measure one – that is,
A
probability space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models ...
is a measure space with a probability measure.
For measure spaces that are also
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s various compatibility conditions can be placed for the measure and the topology. Most measures met in practice in
analysis
Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
(and in many cases also in
probability theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
) are
Radon measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
s. Radon measures have an alternative definition in terms of linear functionals on the
locally convex topological vector space
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vec ...
of
continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s with
compact support
In mathematics, the support of a real-valued function f is the subset of the function domain of elements that are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed ...
. This approach is taken by
Bourbaki (2004) and a number of other sources. For more details, see the article on
Radon measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
s.
Instances
Some important measures are listed here.
* The
counting measure
In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinit ...
is defined by
= number of elements in
* The
Lebesgue measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
on
is a
complete translation-invariant measure on a ''σ''-algebra containing the
intervals in
such that
; and every other measure with these properties extends the Lebesgue measure.
* The
arc length
Arc length is the distance between two points along a section of a curve. Development of a formulation of arc length suitable for applications to mathematics and the sciences is a problem in vector calculus and in differential geometry. In the ...
of interval on the unit circle in the Euclidean plane extends to a measure on the
-algebra they generate. It can be called angle measure since the arc length of an interval equals the angle it supports. This measure is invariant under
rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
s preserving the circle. Similarly,
hyperbolic angle measure is invariant under
squeeze mapping
In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation (mathematics), rotation or shear mapping.
For a fixed p ...
.
* The
Haar measure
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.
This Measure (mathematics), measure was introduced by Alfr� ...
for a
locally compact
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
topological group
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
. For example,
is such a group and its Haar measure is the Lebesgue measure; for the unit circle (seen as a subgroup of the multiplicative group of
) its Haar measure is the angle measure. For a
discrete group
In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and ...
the counting measure is a Haar measure.
*Every (pseudo)
Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
has a canonical measure
that in local coordinates
looks like
where
is the usual Lebesgue measure.
* The
Hausdorff measure
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assi ...
is a generalization of the Lebesgue measure to sets with non-integer dimension, in particular, fractal sets.
* Every
probability space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models ...
gives rise to a measure which takes the value 1 on the whole space (and therefore takes all its values in the
unit interval
In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysi ...
, 1
The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
. Such a measure is called a ''probability measure'' or ''distribution''. See the
list of probability distributions for instances.
* The
Dirac measure
In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element ''x'' or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields.
...
''δ''
''a'' (cf.
Dirac delta function
In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line ...
) is given by ''δ''
''a''(''S'') = ''χ''
''S''(a), where ''χ''
''S'' is the
indicator function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , then the indicator functio ...
of
The measure of a set is 1 if it contains the point
and 0 otherwise.
Other 'named' measures used in various theories include:
Borel measure
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below.
...
,
Jordan measure
Jordan, officially the Hashemite Kingdom of Jordan, is a country in the Southern Levant region of West Asia. Jordan is bordered by Syria to the north, Iraq to the east, Saudi Arabia to the south, and Israel and the occupied Palestinian t ...
,
ergodic measure,
Gaussian measure
In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space \mathbb^n, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are na ...
,
Baire measure,
Radon measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
,
Young measure
In mathematical analysis, a Young measure is a parameterized measure (mathematics), measure that is associated with certain subsequences of a given bounded sequence of measurable functions. They are a quantification of the oscillation effect of th ...
, and
Loeb measure.
In physics an example of a measure is spatial distribution of
mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
(see for example,
gravity potential
In classical mechanics, the gravitational potential is a scalar potential associating with each point in space the work (energy transferred) per unit mass that would be needed to move an object to that point from a fixed reference point in the co ...
), or another non-negative
extensive property,
conserved (see
conservation law
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momen ...
for a list of these) or not. Negative values lead to signed measures, see "generalizations" below.
*
Liouville measure, known also as the natural volume form on a symplectic manifold, is useful in classical statistical and Hamiltonian mechanics.
*
Gibbs measure is widely used in statistical mechanics, often under the name
canonical ensemble
In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the hea ...
.
Measure theory is used in machine learning. One example is the Flow Induced Probability Measure in GFlowNet.
Basic properties
Let
be a measure.
Monotonicity
If
and
are measurable sets with
then
Measure of countable unions and intersections
Countable subadditivity
For any
countable
In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
of (not necessarily disjoint) measurable sets
in
Continuity from below
If
are measurable sets that are increasing (meaning that
) then the
union of the sets
is measurable and
Continuity from above
If
are measurable sets that are decreasing (meaning that
) then the
intersection
In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of the sets
is measurable; furthermore, if at least one of the
has finite measure then
This property is false without the assumption that at least one of the
has finite measure. For instance, for each
let
which all have infinite Lebesgue measure, but the intersection is empty.
Other properties
Completeness
A measurable set
is called a ''null set'' if
A subset of a null set is called a ''negligible set''. A negligible set need not be measurable, but every measurable negligible set is automatically a null set. A measure is called ''complete'' if every negligible set is measurable.
A measure can be extended to a complete one by considering the σ-algebra of subsets
which differ by a negligible set from a measurable set
that is, such that the
symmetric difference
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and ...
of
and
is contained in a null set. One defines
to equal
"Dropping the Edge"
If