HOME





Monge Array
In mathematics applied to computer science, Monge arrays, or Monge matrices, are mathematical objects named for their discoverer, the French mathematician Gaspard Monge. An ''m''-by-''n'' matrix is said to be a ''Monge array'' if, for all \scriptstyle i,\, j,\, k,\, \ell such that :1\le i < k\le m\text1\le j < \ell\le n one obtains :A ,j+ A ,\ell\le A ,\ell+ A ,j\, So for any two rows and two columns of a Monge array (a 2 × 2 sub-matrix) the four elements at the intersection points have the property that the sum of the upper-left and lower right elements (across the
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaspard Monge
Gaspard Monge, Comte de Péluse (; 9 May 1746 – 28 July 1818) was a French mathematician, commonly presented as the inventor of descriptive geometry, (the mathematical basis of) technical drawing, and the father of differential geometry. During the French Revolution he served as the Minister of the Marine, and was involved in the reform of the French educational system, helping to found the École Polytechnique. Early life Monge was born at Beaune, Côte-d'Or, the son of a merchant. He was educated at the college of the Oratorians at Beaune. In 1762 he went to the Collège de la Trinité at Lyon, where, one year after he had begun studying, he was made a teacher of physics at the age of seventeen. After finishing his education in 1764 he returned to Beaune, where he made a large-scale plan of the town, inventing the methods of observation and constructing the necessary instruments; the plan was presented to the town, and is still preserved in their library. An officer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (: matrices) is a rectangle, rectangular array or table of numbers, symbol (formal), symbols, or expression (mathematics), expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a " matrix", or a matrix of dimension . Matrices are commonly used in linear algebra, where they represent linear maps. In geometry, matrices are widely used for specifying and representing geometric transformations (for example rotation (mathematics), rotations) and coordinate changes. In numerical analysis, many computational problems are solved by reducing them to a matrix computation, and this often involves computing with matrices of huge dimensions. Matrices are used in most areas of mathematics and scientific fields, either directly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Main Diagonal
In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix A is the list of entries a_ where i = j. All off-diagonal elements are zero in a diagonal matrix. The following four matrices have their main diagonals indicated by red ones: \begin \color & 0 & 0\\ 0 & \color & 0\\ 0 & 0 & \color\end \qquad \begin \color & 0 & 0 & 0 \\ 0 & \color & 0 & 0 \\ 0 & 0 & \color & 0 \end \qquad \begin \color & 0 & 0 \\ 0 & \color & 0 \\ 0 & 0 & \color \\ 0 & 0 & 0 \end \qquad \begin \color & 0 & 0 & 0 \\ 0 & \color & 0 & 0 \\ 0 & 0 & \color & 0 \\ 0 & 0 & 0 & \color \end Square matrices For a square matrix, the ''diagonal'' (or ''main diagonal'' or ''principal diagonal'') is the diagonal line of entries running from the top-left corner to the bottom-right corner. For a matrix A with row index specified by i and column index specified by j, these would be entries A_ with i = j. For example, the iden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Combination
In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' and ''y'' would be any expression of the form ''ax'' + ''by'', where ''a'' and ''b'' are constants). The concept of linear combinations is central to linear algebra and related fields of mathematics. Most of this article deals with linear combinations in the context of a vector space over a field (mathematics), field, with some generalizations given at the end of the article. Definition Let ''V'' be a vector space over the field ''K''. As usual, we call elements of ''V'' ''vector space, vectors'' and call elements of ''K'' ''scalar (mathematics), scalars''. If v1,...,v''n'' are vectors and ''a''1,...,''a''''n'' are scalars, then the ''linear combination of those vectors with those scalars as coefficients'' is :a_1 \mathbf v_1 + a_2 \mathbf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SMAWK Algorithm
The SMAWK algorithm is an algorithm for finding the minimum value in each row of an implicitly-defined totally monotone matrix. It is named after the initials of its five inventors, Peter Shor, Shlomo Moran, Alok Aggarwal, Robert Wilber, and Maria Klawe.. Input For the purposes of this algorithm, a matrix is defined to be monotone if each row's minimum value occurs in a column which is equal to or greater than the column of the previous row's minimum. It is totally monotone if the same property is true for every submatrix (defined by an arbitrary subset of the rows and columns of the given matrix). Equivalently, a matrix is totally monotone if there does not exist a 2×2 submatrix whose row minima are in the top right and bottom left corners. Every Monge array is totally monotone, but not necessarily vice versa. For the SMAWK algorithm, the matrix to be searched should be defined as a function, and this function is given as input to the algorithm (together with the dimensions of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Supermodular Function
In mathematics, a supermodular function is a function on a lattice that, informally, has the property of being characterized by "increasing differences." Seen from the point of set functions, this can also be viewed as a relationship of "increasing returns", where adding more elements to a subset increases its valuation. In economics, supermodular functions are often used as a formal expression of complementarity in preferences among goods. Supermodular functions are studied and have applications in game theory, economics, lattice theory, combinatorial optimization, and machine learning. Definition Let (X, \preceq) be a lattice. A real-valued function f: X \rightarrow \mathbb is called supermodular if f(x \vee y) + f(x \wedge y) \geq f(x) + f(y) for all x, y \in X. If the inequality is strict, then f is strictly supermodular on X. If -f is (strictly) supermodular then ''f'' is called (strictly) submodular. A function that is both submodular and supermodular is called modula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorial Optimization
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead. Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science. Applications Basic applications of combina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Traveling Salesman Problem
In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research. The travelling purchaser problem, the vehicle routing problem and the ring star problem are three generalizations of TSP. The decision version of the TSP (where given a length ''L'', the task is to decide whether the graph has a tour whose length is at most ''L'') belongs to the class of NP-complete problems. Thus, it is possible that the worst-case running time for any algorithm for the TSP increases superpolynomially (but no more than exponentially) with the number of cities. The problem was first formulated in 1930 and is one of the most intensively studied problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supnick Matrix
A Supnick matrix or Supnick array – named after Fred Supnick of the City College of New York, who introduced the notion in 1957 – is a Monge array which is also a symmetric matrix. Mathematical definition A Supnick matrix is a square Monge array that is symmetric around the main diagonal. An ''n''-by-''n'' matrix is a Supnick matrix if, for all ''i'', ''j'', ''k'', ''l'' such that if :1\le i < k\le n and 1\le j < l\le n then :a_ + a_ \le a_ + a_\, and also :a_ = a_. \, A logically equivalent definition is given by Rudolf & Woeginger who in 1995 proved that :''A matrix is a Supnick matrix it can be written as the sum of a sum matrix ''S'' and a non-negative linear combination of LL-UR block matrices.'' The ''sum matrix'' is defined in terms of a sequence of ''n'' real numbers : : S =
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]