HOME





Modern Searches For Lorentz Violation
Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity. Lorentz violations concern the fundamental predictions of special relativity, such as the principle of relativity, the constancy of the speed of light in all inertial frames of reference, and time dilation, as well as the predictions of the standard model of particle physics. To assess and predict possible violations, test theories of special relativity and effective field theories (EFT) such as the Standard-Model Extension (SME) have been invented. These models introduce Lorentz and CPT violation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Effective Field Theory
In physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective field theory includes the appropriate degrees of freedom (physics and chemistry), degrees of freedom to describe physical phenomena occurring at a chosen length scale or energy scale, while ignoring substructure and degrees of freedom at shorter distances (or, equivalently, at higher energies). Intuitively, one averages over the behavior of the underlying theory at shorter length scales to derive what is hoped to be a simplified model at longer length scales. Effective field theories typically work best when there is a large separation between length scale of interest and the length scale of the underlying dynamics. Effective field theories have found use in particle physics, statistical mechanics, condensed matter physics, general relativity, and hydrodynamics. They simplify calculati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noncommutative Quantum Field Theory
In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative geometry and index theory in which the coordinate functions are noncommutative. One commonly studied version of such theories has the "canonical" commutation relation: : ^, x^i \theta^ \,\! where x^ and x^ are the hermitian generators of a noncommutative C^*-algebra of "functions on spacetime". That means that (with any given set of axes), it is impossible to accurately measure the position of a particle with respect to more than one axis. In fact, this leads to an uncertainty relation for the coordinates analogous to the Heisenberg uncertainty principle. Various lower limits have been claimed for the noncommutative scale, (i.e. how accurately positions can be measured) but there is currently no experimental evidence in favour of such a t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Noncommutative Geometry
Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions, possibly in some generalized sense. A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which xy does not always equal yx; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions. An approach giving deep insight about noncommutative spaces is through operator algebras, that is, algebras of bounded linear operators on a Hilbert space. Perhaps one of the typical examples of a noncommutative space is the " noncommutative torus", which played a key role in the early development of this field in 1980s and lead to noncomm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CP Violation
In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge conjugation symmetry) and P-symmetry ( parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial coordinates are inverted ("mirror" or P-symmetry). CP violation is only observed in the weak interaction. The discovery of CP violation in 1964 in the decays of neutral kaons resulted in the Nobel Prize in Physics in 1980 for its discoverers James Cronin and Val Fitch. CP violation was subsequently discovered in many other meson decays. In 2025, the LHCb experiment discovered CP violation in baryons. There is some evidence CP violation may occur in neutrino interactions. It is important to the matter-antimatter asymmetry problem, the strong CP problem, and in the study of weak interactions in particle physics. Under the CPT theorem, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Very Special Relativity
Ignoring gravity, experimental bounds seem to suggest that special relativity with its Lorentz symmetry and Poincaré symmetry describes spacetime. Surprisingly, Bogoslovsky and independently Cohen and Glashow have demonstrated that a small subgroup of the Lorentz group is sufficient to explain all the current bounds. The minimal subgroup in question can be described as follows: The stabilizer of a null vector In mathematics, given a vector space ''X'' with an associated quadratic form ''q'', written , a null vector or isotropic vector is a non-zero element ''x'' of ''X'' for which . In the theory of real bilinear forms, definite quadratic forms an ... is the special Euclidean group SE(2), which contains T(2) as the subgroup of parabolic transformations. This T(2), when extended to include either parity or time reversal (i.e. subgroups of the orthochronous and time-reversal respectively), is sufficient to give us all the standard predictions. Their new symmetry is cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planck Length
In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: '' c'', '' G'', '' ħ'', and ''k''B (described further below). Expressing one of these physical constants in terms of Planck units yields a numerical value of 1. They are a system of natural units, defined using fundamental properties of nature (specifically, properties of free space) rather than properties of a chosen prototype object. Originally proposed in 1899 by German physicist Max Planck, they are relevant in research on unified theories such as quantum gravity. The term Planck scale refers to quantities of space, time, energy and other units that are similar in magnitude to corresponding Planck units. This region may be characterized by particle energies of around or , time intervals of around and lengths of around (approximately the energy-equivalent of the Planck mass, the Planck time and the Planck len ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Doubly Special Relativity
Doubly special relativity (DSR) – also called deformed special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity (the speed of light), but also an observer-independent maximum energy scale (the Planck energy) and/or a minimum length scale (the Planck length). This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames. History First attempts to modify special relativity by introducing an observer-independent length were made by Pavlopoulos (1967), who estimated this length at about . In the context of quantum gravity, Giovanni Amelino-Camelia (2000) intr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Test Theories Of Special Relativity
Test theories of special relativity give a mathematical framework for analyzing results of experiments to verify special relativity. An experiment to test the theory of relativity cannot assume the theory is true, and therefore needs some other framework of assumptions that are wider than those of relativity. For example, a test theory may have a different postulate about light concerning one-way speed of light vs. two-way speed of light, it may have a preferred frame of reference, and may violate Lorentz invariance in many different ways. Test theories predicting different experimental results from Einstein's special relativity, are ''Robertson's test theory (1949)'', and the ''Mansouri–Sexl theory (1977)'' which is equivalent to Robertson's theory. Another, more extensive model is the Standard-Model Extension, which also includes the standard model and general relativity. Robertson–Mansouri–Sexl framework Basic principles Howard Percy Robertson (1949) extended the L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General theory of relativity, relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time in physics, time, or four-dimensional spacetime. In particular, the ''curvature of spacetime'' is directly related to the energy and momentum of whatever is present, including matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations. Newton's law of universal gravitation, which describes gravity in classical mechanics, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Parameterized Post-Newtonian Formalism
In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity. The parameterized post-Newtonian formalism or PPN formalism, is a version of this fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dispersion Relation
In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency-dependence of wave propagation and attenuation. Dispersion may be caused either by geometric boundary conditions ( waveguides, shallow water) or by interaction of the waves with the transmitting medium. Elementary particles, considered as matter waves, have a nontrivial dispersion relation, even in the absence of geometric constraints and other media. In the presence of dispersion, a wave does not propagate with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]