Minimum Bias Event
   HOME





Minimum Bias Event
Minimum bias (MB) events are inelastic events selected by a high-energy experiment's loose (minimum bias) trigger with as little bias as possible. MB events can include both non-diffractive and diffractive processes although the precise definition and relative contributions vary among experiments and analyses. Quite often the beam hadrons ooze through each other and fall apart without any hard collisions occurring in the event. MB event is not the same as the underlying event (UE), which consists of particles accompanying a hard scattering. The density of particles in the UE in jet events is found to be roughly a factor of two greater than that in MB in proton-proton collisions at the Tevatron and the LHC The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundr .... References {{Reflist Par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inelastic Collision
An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energy of the atoms, causing a heating effect, and the bodies are deformed. The molecules of a gas or liquid rarely experience perfectly elastic collisions because kinetic energy is exchanged between the molecules' translational motion and their internal degrees of freedom with each collision. At any one instant, half the collisions are – to a varying extent – inelastic (the pair possesses less kinetic energy after the collision than before), and half could be described as “super-elastic” (possessing ''more'' kinetic energy after the collision than before). Averaged across an entire sample, molecular collisions are elastic. Although inelastic collisions do not conserve kinetic energy, they do obey conservation of momentum. Si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Collider
A collider is a type of particle accelerator which brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators. Colliders are used as a research tool in particle physics by accelerating particles to very high kinetic energy and letting them impact other particles. Analysis of the byproducts of these collisions gives scientists good evidence of the structure of the subatomic world and the laws of nature governing it. These may become apparent only at high energies and for tiny periods of time, and therefore may be hard or impossible to study in other ways. Explanation In particle physics one gains knowledge about elementary particles by accelerating particles to very high kinetic energy and letting them impact on other particles. For sufficiently high energy, a reaction occurs that transforms the particles into other particles. Detecting these products gives insight into the physics involved. To d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regge Theory
Regge may refer to * Tullio Regge (1931-2014), Italian physicist, developer of Regge calculus and Regge theory * Regge calculus, formalism for producing simplicial approximations of spacetimes * Regge theory, study of the analytic properties of scattering * 3778 Regge, main-belt asteroid * Regge (river) The Regge rɛɣəis a river in the Netherlands. It is a tributary to the Vecht of Overijssel. The source of the Regge is near the town Goor. It flows north through Rijssen, Nijverdal, and Hellendoorn. The Regge joins the Vecht near Ommen Omm ..., river in Overijssel, the Netherlands {{disambig, surname Surnames of Italian origin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Underlying Event
In particle physics, underlying event (UE) refers to the additional interactions of two particle beams at a collision point beyond the main collision under study. Specifically, the term is used for hadron collider events which do not originate from the primary hard scattering (high energy, high momentum impact) process. The term was first defined in 2002. Further explanation Underlying events can be thought of as the remnants of scattering Fundamental interaction, interactions. The UE may involve contributions from both "hard" and "soft" processes (here “soft” refers to interactions with low p-T, i.e. transverse momentum, transfer). These are important both in the simulation of particle experiments (often using event generators); and interpretation and analysis of data so as to filter out the desired signals. Wilhelm and Else Heraeus-Seminar on “New Event Generators for Particle Physics Experiments” Features Contents of UE include initial and final state radiation, beam-bea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jet (particle Physics)
A jet is a narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. Particles carrying a color charge, such as quarks, cannot exist in free form because of quantum chromodynamics (QCD) confinement which only allows for colorless states. When an object containing color charge fragments, each fragment carries away some of the color charge. In order to obey confinement, these fragments create other colored objects around them to form colorless objects. The ensemble of these objects is called a jet, since the fragments all tend to travel in the same direction, forming a narrow "jet" of particles. Jets are measured in particle detectors and studied in order to determine the properties of the original quarks. A jet definition includes a jet algorithm and a recombination scheme. The former defines how some inputs, e.g. particles or detector objects, are grouped into jets, while the latter specifies how a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tevatron
The Tevatron was a circular particle accelerator (active until 2011) in the United States, at the Fermi National Accelerator Laboratory (also known as ''Fermilab''), east of Batavia, Illinois, and is the second highest energy particle collider ever built, after the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN) near Geneva, Switzerland. The Tevatron was a synchrotron that accelerated protons and antiprotons in a ring to energies of up to 1 TeV, hence its name. The Tevatron was completed in 1983 at a cost of $120 million and significant upgrade investments were made during its active years of 1983–2011. The main achievement of the Tevatron was the discovery in 1995 of the top quark—the last fundamental fermion predicted by the Standard Model of particle physics. On July 2, 2012, scientists of the CDF and DØ collider experiment teams at Fermilab announced the findings from the analysis of around 500 trillion collisions produced from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scattering
Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called ''diffuse reflections'' and unscattered reflections are called ''specular'' (mirror-like) reflections. Originally, the term was confined to light scattering (going back at least as far as Isaac Newton in the 17th century). As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" (not then recognized as electromagnetic in nature) in 1800. John Tyndall, a pioneer in light scattering researc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]