HOME





Mass Gap
In quantum field theory, the mass gap is the difference in energy between the lowest energy state, the vacuum, and the next lowest energy state. The energy of the vacuum is zero by definition, and assuming that all energy states can be thought of as particles in plane-waves, the mass gap is the mass of the lightest particle. Since the energies of exact (i.e. nonperturbative) energy eigenstates are spread out and therefore are not technically eigenstates, a more precise definition is that the mass gap is the greatest lower bound of the energy of any state which is orthogonal to the vacuum. The analog of a mass gap in many-body physics on a discrete lattice arises from a gapped Hamiltonian. Mathematical definitions For a given real-valued quantum field \phi(x), where x = (\boldsymbol,t), we can say that the theory has a mass gap if the two-point function has the property \langle\phi(0,t)\phi(0,0)\rangle\sim \sum_nA_n\exp\left(-\Delta_nt\right) with \Delta_0>0 being the lowest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Freedom
In the physics of gauge theory, gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant Degrees of freedom (physics and chemistry), degrees of freedom in field (physics), field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a certain transformation, equivalent to a symmetry transformation, shear along unphysical axes in configuration space. Most of the quantitative physical predictions of a gauge theory can only be obtained under a coherent prescription for suppressing or ignoring these unphysical degrees of freedom. Although the unphysical axes in the space of detailed configurations are a fundamental property of the physical model, there is no special set of directions "perpendicular" to them. Hence there is an enormo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coleman–Mandula Theorem
In theoretical physics, the Coleman–Mandula theorem is a no-go theorem stating that spacetime and internal symmetries can only combine in a trivial way. This means that the charges associated with internal symmetries must always transform as Lorentz scalars. Some notable exceptions to the no-go theorem are conformal symmetry and supersymmetry. It is named after Sidney Coleman and Jeffrey Mandula who proved it in 1967 as the culmination of a series of increasingly generalized no-go theorems investigating how internal symmetries can be combined with spacetime symmetries. The supersymmetric generalization is known as the Haag–Łopuszański–Sohnius theorem. History In the early 1960s, the global \text(3) flavor symmetry associated with the eightfold way was shown to successfully describe the hadron spectrum for hadrons of the same spin. This led to efforts to expand the global \text(3) symmetry to a larger \text(6) symmetry mixing both flavour and spin, an idea similar to tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Triviality
In a quantum field theory, charge screening can restrict the value of the observable "renormalized" charge of a classical theory. If the only resulting value of the renormalized charge is zero, the theory is said to be "trivial" or noninteracting. Thus, surprisingly, a classical theory that appears to describe interacting particles can, when realized as a quantum field theory, become a "trivial" theory of noninteracting free particles. This phenomenon is referred to as quantum triviality. Strong evidence supports the idea that a field theory involving only a scalar Higgs boson is trivial in four spacetime dimensions, but the situation for realistic models including other particles in addition to the Higgs boson is not known in general. Nevertheless, because the Higgs boson plays a central role in the Standard Model of particle physics, the question of triviality in Higgs models is of great importance. This Higgs triviality is similar to the Landau pole problem in quantum electrody ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gauge Theory
In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, the Lagrangian is invariant under these transformations. The term "gauge" refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the '' symmetry group'' or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the gauge field. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called gauge invariance). When such a theory is quantized, the quanta of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Källén–Lehmann Spectral Representation
The Källén–Lehmann spectral representation, or simply Lehmann representation, gives a general expression for the (time ordered) two-point function of an interacting quantum field theory as a sum of free propagators. It was discovered by Gunnar Källén in 1952, and independently by Harry Lehmann in 1954. This can be written as, using the mostly-minus metric signature, :\Delta(p)=\int_0^\infty d\mu^2\rho(\mu^2)\frac, where \rho(\mu^2) is the spectral density function that should be positive definite. In a gauge theory, this latter condition cannot be granted but nevertheless a spectral representation can be provided. This belongs to non-perturbative techniques of quantum field theory. Mathematical derivation The following derivation employs the mostly-minus metric signature. In order to derive a spectral representation for the propagator of a field \Phi(x), one considers a complete set of states \ so that, for the two-point function one can write :\langle 0, \Phi(x)\P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glueball
In particle physics, a glueball (also gluonium, gluon-ball) is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states. In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable. Theoretical calculations show that glueballs should exist at energy ranges accessible with current technology. However, due to the aforementioned difficulty (among others), they have so far not been observed and identified with certainty, although phenomenological calculations have suggested ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Millennium Prize Problems
The Millennium Prize Problems are seven well-known complex mathematics, mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US $1 million prize for the first correct solution to each problem. The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the Millennium Meeting held on May 24, 2000. Thus, on the official website of the Clay Mathematics Institute, these seven problems are officially called the Millennium Problems. To date, the only Millennium Prize problem to have been solved is the Poincaré conjecture. The Clay Institute awarded the monetary prize to Russian mathematician Grigori Perelman in 2010. However, he declined the award as it w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clay Mathematics Institute
The Clay Mathematics Institute (CMI) is a private, non-profit foundation dedicated to increasing and disseminating mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address is now in Denver, Colorado. CMI's scientific activities are managed from the President's office in Oxford, United Kingdom. It gives out various awards and sponsorships to promising mathematicians. The institute was founded in 1998 through the sponsorship of Boston businessman Landon T. Clay. Harvard mathematician Arthur Jaffe was the first president of CMI. While the institute is best known for its Millennium Prize Problems, it carries out a wide range of activities, including conferences, workshops, summer schools, and a postdoctoral program supporting Clay Research Fellows. Governance The institute is run according to a standard structure comprising a scientific advisory committee that decides on grant-awarding and research proposals, and a board of directors that overs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tower Of Excitations
A tower is a tall structure, taller than it is wide, often by a significant factor. Towers are distinguished from masts by their lack of guy-wires and are therefore, along with tall buildings, self-supporting structures. Towers are specifically distinguished from buildings in that they are built not to be habitable but to serve other functions using the height of the tower. For example, the height of a clock tower improves the visibility of the clock, and the height of a tower in a fortified building such as a castle increases the visibility of the surroundings for defensive purposes. Towers may also be built for observation, leisure, or telecommunication purposes. A tower can stand alone or be supported by adjacent buildings, or it may be a feature on top of a larger structure or building. Etymology Old English ''torr'' is from Latin ''turris'' via Old French ''tor''. The Latin term together with Greek τύρσις was loaned from a pre-Indo-European Mediterranean language, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jacobi's Elliptic Functions
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation \operatorname for \sin. The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by . Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later. Overview There are twelve Jacobi elliptic functions denoted by \operatorna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goldstone Boson
In physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu within the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory. In condensed matter physics such bosons are quasiparticles and are known as Goldstone modes or Anderson–Bogoliubov modes. These spinless bosons correspond to the spontaneously broken internal symmetry generators, and are characterized by the quantum numbers of these. They transform nonlinearly (shift) under the action of these generators, and can thus be excited out of the asymmetric vacuum by these generators. Thus, they can be thought of as the excitations of the field in the broken symmetry directions in group space—and are massless if the spontaneously broken symmetry is not also broke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]