HOME

TheInfoList



OR:

The Millennium Prize Problems are seven well-known complex
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US $1 million prize for the first correct solution to each problem. The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the
Birch and Swinnerton-Dyer conjecture In mathematics, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory ...
, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem,
Riemann hypothesis In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure ...
, Yang–Mills existence and mass gap, and the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured b ...
at the Millennium Meeting held on May 24, 2000. Thus, on the official website of the Clay Mathematics Institute, these seven problems are officially called the Millennium Problems. To date, the only Millennium Prize problem to have been solved is the Poincaré conjecture. The Clay Institute awarded the monetary prize to Russian mathematician Grigori Perelman in 2010. However, he declined the award as it was not also offered to Richard S. Hamilton, upon whose work Perelman built.


Overview

The Clay Institute was inspired by a set of twenty-three problems organized by the mathematician
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
in 1900 which were highly influential in driving the progress of mathematics in the twentieth century. The seven selected problems span a number of mathematical fields, namely
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, arithmetic geometry,
geometric topology In mathematics, geometric topology is the study of manifolds and Map (mathematics)#Maps as functions, maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topo ...
,
mathematical physics Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the de ...
,
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
,
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s, and
theoretical computer science Theoretical computer science is a subfield of computer science and mathematics that focuses on the Abstraction, abstract and mathematical foundations of computation. It is difficult to circumscribe the theoretical areas precisely. The Associati ...
. Unlike Hilbert's problems, the problems selected by the Clay Institute were already renowned among professional mathematicians, with many actively working towards their resolution. The seven problems were officially announced by John Tate and Michael Atiyah during a ceremony held on May 24, 2000 (at the amphithéâtre Marguerite de Navarre) in the Collège de France in
Paris Paris () is the Capital city, capital and List of communes in France with over 20,000 inhabitants, largest city of France. With an estimated population of 2,048,472 residents in January 2025 in an area of more than , Paris is the List of ci ...
. Grigori Perelman, who had begun work on the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured b ...
in the 1990s, released his proof in 2002 and 2003. His refusal of the Clay Institute's monetary prize in 2010 was widely covered in the media. The other six Millennium Prize Problems remain unsolved, despite a large number of unsatisfactory proofs by both amateur and professional mathematicians.
Andrew Wiles Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specialising in number theory. He is best known for Wiles's proof of Fermat's Last Theorem, proving Ferma ...
, as part of the Clay Institute's scientific advisory board, hoped that the choice of
US$ The United States dollar (Currency symbol, symbol: Dollar sign, $; ISO 4217, currency code: USD) is the official currency of the United States and International use of the U.S. dollar, several other countries. The Coinage Act of 1792 introdu ...
1 million prize money would popularize, among general audiences, both the selected problems as well as the "excitement of mathematical endeavor". Another board member, Fields medalist
Alain Connes Alain Connes (; born 1 April 1947) is a French mathematician, known for his contributions to the study of operator algebras and noncommutative geometry. He was a professor at the , , Ohio State University and Vanderbilt University. He was awar ...
, hoped that the publicity around the unsolved problems would help to combat the "wrong idea" among the public that mathematics would be "overtaken by computers". Some mathematicians have been more critical. Anatoly Vershik characterized their monetary prize as "show business" representing the "worst manifestations of present-day mass culture", and thought that there are more meaningful ways to invest in public appreciation of mathematics. He viewed the superficial media treatments of Perelman and his work, with disproportionate attention being placed on the prize value itself, as unsurprising. By contrast, Vershik praised the Clay Institute's direct funding of research conferences and young researchers. Vershik's comments were later echoed by Fields medalist
Shing-Tung Yau Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and professor emeritus at Harvard University. Until 2022, Yau was the William Caspar ...
, who was additionally critical of the idea of a foundation taking actions to "appropriate" fundamental mathematical questions and "attach its name to them".


Solved problem


Poincaré conjecture

In the field of
geometric topology In mathematics, geometric topology is the study of manifolds and Map (mathematics)#Maps as functions, maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topo ...
, a two-dimensional
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
is characterized by the fact that it is the only closed and simply-connected two-dimensional surface. In 1904,
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
posed the question of whether an analogous statement holds true for three-dimensional shapes. This came to be known as the Poincaré conjecture, the precise formulation of which states: Although the conjecture is usually stated in this form, it is equivalent (as was discovered in the 1950s) to pose it in the context of
smooth manifolds In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas (topology ...
and
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
s. A proof of this conjecture, together with the more powerful geometrization conjecture, was given by Grigori Perelman in 2002 and 2003. Perelman's solution completed Richard Hamilton's program for the solution of the geometrization conjecture, which he had developed over the course of the preceding twenty years. Hamilton and Perelman's work revolved around Hamilton's Ricci flow, which is a complicated system of
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s defined in the field of
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
. For his contributions to the theory of Ricci flow, Perelman was awarded the
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place e ...
in 2006. However, he declined to accept the prize. For his proof of the Poincaré conjecture, Perelman was awarded the Millennium Prize on March 18, 2010. However, he declined the award and the associated prize money, stating that Hamilton's contribution was no less than his own.


Unsolved problems


Birch and Swinnerton-Dyer conjecture

The
Birch A birch is a thin-leaved deciduous hardwood tree of the genus ''Betula'' (), in the family Betulaceae, which also includes alders, hazels, and hornbeams. It is closely related to the beech- oak family Fagaceae. The genus ''Betula'' contains 3 ...
and Swinnerton-Dyer conjecture deals with certain types of equations: those defining
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the ...
s over the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s. The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve has rank , then the ''L''-function associated with it vanishes to order at . Hilbert's tenth problem dealt with a more general type of equation, and in that case it was proven that there is no algorithmic way to decide whether a given equation even has any solutions. The official statement of the problem was given by
Andrew Wiles Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specialising in number theory. He is best known for Wiles's proof of Fermat's Last Theorem, proving Ferma ...
.


Hodge conjecture

The Hodge conjecture is that for projective
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
, Hodge cycles are rational
linear combination In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
s of algebraic cycles. :\operatorname^k(X) = H^(X, \Q) \cap H^(X). We call this the group of ''Hodge classes'' of degree 2''k'' on ''X''. The modern statement of the Hodge conjecture is: ::Let ''X'' be a non-singular complex projective variety. Then every Hodge class on ''X'' is a linear combination with rational coefficients of the cohomology classes of complex subvarieties of ''X''. The official statement of the problem was given by
Pierre Deligne Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoor ...
.


Navier–Stokes existence and smoothness

: \overbrace^ \overbrace^ + \underbrace_ . The
Navier–Stokes equations The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
describe the motion of
fluid In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
s, and are one of the pillars of
fluid mechanics Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasma (physics), plasmas) and the forces on them. Originally applied to water (hydromechanics), it found applications in a wide range of discipl ...
. However, theoretical understanding of their solutions is incomplete, despite its importance in science and engineering. For the three-dimensional system of equations, and given some initial conditions, mathematicians have not yet proven that smooth solutions always exist. This is called the '' Navier–Stokes existence and smoothness'' problem. The problem, restricted to the case of an
incompressible flow In fluid mechanics, or more generally continuum mechanics, incompressible flow is a flow in which the material density does not vary over time. Equivalently, the divergence of an incompressible flow velocity is zero. Under certain conditions, t ...
, is to prove either that smooth, globally defined solutions exist that meet certain conditions, or that they do not always exist and the equations break down. The official statement of the problem was given by Charles Fefferman.


P versus NP

The question is whether or not, for all problems for which an algorithm can ''verify'' a given solution quickly (that is, in
polynomial time In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations p ...
), an algorithm can also ''find'' that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are also in P. This is generally considered one of the most important open questions in
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
and
theoretical computer science Theoretical computer science is a subfield of computer science and mathematics that focuses on the Abstraction, abstract and mathematical foundations of computation. It is difficult to circumscribe the theoretical areas precisely. The Associati ...
as it has far-reaching consequences to other problems in
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, to
biology Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
,
philosophy Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational an ...
and to
cryptography Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), ...
(see P versus NP problem proof consequences). A common example of an NP problem not known to be in P is the
Boolean satisfiability problem In logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) asks whether there exists an Interpretation (logic), interpretation that Satisf ...
. Most mathematicians and computer scientists expect that P ≠ NP; however, it remains unproven. The official statement of the problem was given by Stephen Cook.


Riemann hypothesis

:\zeta(s) = \sum_^\infty n^ = \frac + \frac + \frac + \cdots The Riemann zeta function ζ(s) is a function whose
arguments An argument is a series of sentences, statements, or propositions some of which are called premises and one is the conclusion. The purpose of an argument is to give reasons for one's conclusion via justification, explanation, and/or persua ...
may be any
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
other than 1, and whose values are also complex. Its analytical continuation has zeros at the negative even integers; that is, ζ(s) = 0 when s is one of −2, −4, −6, .... These are called its trivial zeros. However, the negative even integers are not the only values for which the zeta function is zero. The other ones are called nontrivial zeros. The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that: ::The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of . A proof or disproof of this would have far-reaching implications in
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, especially for the distribution of
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s. This was Hilbert's eighth problem, and is still considered an important
open problem In science and mathematics, an open problem or an open question is a known problem which can be accurately stated, and which is assumed to have an objective and verifiable solution, but which has not yet been solved (i.e., no solution for it is kno ...
a century later. The problem has been well-known ever since it was originally posed by
Bernhard Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ...
in 1860. The Clay Institute's exposition of the problem was given by
Enrico Bombieri Enrico Bombieri (born 26 November 1940) is an Italian mathematician, known for his work in analytic number theory, Diophantine geometry, complex analysis, and group theory. Bombieri is currently professor emeritus in the School of Mathematics ...
.


Yang–Mills existence and mass gap

In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, the mass gap is the difference in energy between the vacuum and the next lowest energy state. The energy of the vacuum is zero by definition, and assuming that all energy states can be thought of as particles in plane-waves, the mass gap is the mass of the lightest particle. For a given real field \phi(x), we can say that the theory has a mass gap if the two-point function has the property :\langle\phi(0,t)\phi(0,0)\rangle\sim \sum_nA_n\exp\left(-\Delta_nt\right) with \Delta_0>0 being the lowest energy value in the
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of the
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
and thus the mass gap. This quantity, easy to generalize to other fields, is what is generally measured in lattice computations. Quantum
Yang–Mills theory Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special un ...
is the current grounding for the majority of theoretical applications of thought to the reality and potential realities of elementary particle physics. The theory is a generalization of the
Maxwell Maxwell may refer to: People * Maxwell (surname), including a list of people and fictional characters with the name ** James Clerk Maxwell, mathematician and physicist * Justice Maxwell (disambiguation) * Maxwell baronets, in the Baronetage of N ...
theory of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
where the ''chromo''-electromagnetic field itself carries charge. As a classical field theory it has solutions which travel at the speed of light so that its quantum version should describe massless particles (
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
s). However, the postulated phenomenon of
color confinement In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions b ...
permits only bound states of gluons, forming massive particles. This is the mass gap. Another aspect of confinement is asymptotic freedom which makes it conceivable that quantum Yang-Mills theory exists without restriction to low energy scales. The problem is to establish rigorously the existence of the quantum Yang–Mills theory and a mass gap. ::Prove that for any compact simple gauge group G, a non-trivial quantum Yang–Mills theory exists on \mathbb^4 and has a mass gap Δ > 0. Existence includes establishing axiomatic properties at least as strong as those cited in Streater & Wightman (1964), Osterwalder & Schrader (1973), and Osterwalder & Schrader (1975). The official statement of the problem was given by Arthur Jaffe and
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
.


See also

* Beal conjecture *
Hilbert's problems Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the pr ...
* List of mathematics awards *
List of unsolved problems in mathematics Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, Mathematical analysis, analysis, combinatorics, Algebraic geometry, alge ...
* Smale's problems * Paul Wolfskehl (offered a cash prize for the solution to
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive number, positive integers , , and satisfy the equation for any integer value of greater than . The cases ...
) * abc conjecture


References

*


Further reading

* *


External links


The Millennium Prize Problems
{{Active inducement prize contests Challenge awards Unsolved problems in mathematics